depot/third_party/nixpkgs/pkgs/development/python-modules/optuna/default.nix

141 lines
2.1 KiB
Nix
Raw Normal View History

{ lib
, buildPythonPackage
, fetchFromGitHub
, pytestCheckHook
, pythonOlder
, alembic
, boto3
, botorch
, catboost
, cma
, cmaes
, colorlog
, distributed
, fakeredis
, fastai
, lightgbm
, matplotlib
, mlflow
, moto
, numpy
, packaging
, pandas
, plotly
, pytest-xdist
, pytorch-lightning
, pyyaml
, redis
, scikit-learn
, scikit-optimize
, scipy
, setuptools
, shap
, sqlalchemy
, tensorflow
, torch
, torchaudio
, torchvision
, tqdm
, wandb
, wheel
, xgboost
}:
buildPythonPackage rec {
pname = "optuna";
version = "3.3.0";
format = "pyproject";
disabled = pythonOlder "3.7";
src = fetchFromGitHub {
owner = "optuna";
repo = "optuna";
rev = "refs/tags/v${version}";
hash = "sha256-uHv8uEJOQO1+AeNSxBtnCt6gDQHLT1RToF4hfolVVX0=";
};
nativeBuildInputs = [
setuptools
wheel
];
propagatedBuildInputs = [
alembic
cmaes
colorlog
numpy
packaging
sqlalchemy
tqdm
pyyaml
];
passthru.optional-dependencies = {
integration = [
botorch
catboost
cma
distributed
fastai
lightgbm
mlflow
pandas
# pytorch-ignite
pytorch-lightning
scikit-learn
scikit-optimize
shap
tensorflow
torch
torchaudio
torchvision
wandb
xgboost
];
optional = [
boto3
botorch
matplotlib
pandas
plotly
redis
scikit-learn
];
};
preCheck = ''
export PATH=$out/bin:$PATH
'';
nativeCheckInputs = [
fakeredis
moto
pytest-xdist
pytestCheckHook
scipy
] ++ fakeredis.optional-dependencies.lua
++ passthru.optional-dependencies.optional;
pytestFlagsArray = [
"-m 'not integration'"
];
disabledTestPaths = [
# require unpackaged kaleido and building it is a bit difficult
"tests/visualization_tests"
];
pythonImportsCheck = [
"optuna"
];
meta = with lib; {
description = "A hyperparameter optimization framework";
homepage = "https://optuna.org/";
changelog = "https://github.com/optuna/optuna/releases/tag/${src.rev}";
license = licenses.mit;
maintainers = with maintainers; [ natsukium ];
};
}