depot/third_party/nixpkgs/pkgs/development/python-modules/torch/default.nix

384 lines
14 KiB
Nix
Raw Normal View History

{ stdenv, lib, fetchFromGitHub, fetchpatch, buildPythonPackage, python,
cudaSupport ? false, cudaPackages, magma,
useSystemNccl ? true,
MPISupport ? false, mpi,
buildDocs ? false,
# Native build inputs
cmake, util-linux, linkFarm, symlinkJoin, which, pybind11, removeReferencesTo,
# Build inputs
numactl,
Accelerate, CoreServices, libobjc,
# Propagated build inputs
numpy, pyyaml, cffi, click, typing-extensions,
# Unit tests
hypothesis, psutil,
# Disable MKLDNN on aarch64-darwin, it negatively impacts performance,
# this is also what official pytorch build does
mklDnnSupport ? !(stdenv.isDarwin && stdenv.isAarch64),
# virtual pkg that consistently instantiates blas across nixpkgs
# See https://github.com/NixOS/nixpkgs/pull/83888
blas,
# ninja (https://ninja-build.org) must be available to run C++ extensions tests,
ninja,
linuxHeaders_5_19,
# dependencies for torch.utils.tensorboard
pillow, six, future, tensorboard, protobuf,
isPy3k, pythonOlder,
# ROCm dependencies
rocmSupport ? false,
gpuTargets ? [ ],
openmp, rocm-core, hip, rccl, miopen, miopengemm, rocrand, rocblas,
rocfft, rocsparse, hipsparse, rocthrust, rocprim, hipcub, roctracer,
rocsolver, hipfft, hipsolver, hipblas, rocminfo, rocm-thunk, rocm-comgr,
rocm-device-libs, rocm-runtime, rocm-opencl-runtime, hipify
}:
let
inherit (lib) lists strings trivial;
inherit (cudaPackages) cudatoolkit cudaFlags cudnn nccl;
in
# assert that everything needed for cuda is present and that the correct cuda versions are used
assert !cudaSupport || (let majorIs = lib.versions.major cudatoolkit.version;
in majorIs == "9" || majorIs == "10" || majorIs == "11");
# confirm that cudatoolkits are sync'd across dependencies
assert !(MPISupport && cudaSupport) || mpi.cudatoolkit == cudatoolkit;
assert !cudaSupport || magma.cudaPackages.cudatoolkit == cudatoolkit;
let
setBool = v: if v then "1" else "0";
# https://github.com/pytorch/pytorch/blob/v1.13.1/torch/utils/cpp_extension.py#L1751
supportedTorchCudaCapabilities =
let
real = ["3.5" "3.7" "5.0" "5.2" "5.3" "6.0" "6.1" "6.2" "7.0" "7.2" "7.5" "8.0" "8.6"];
ptx = lists.map (x: "${x}+PTX") real;
in
real ++ ptx;
# NOTE: The lists.subtractLists function is perhaps a bit unintuitive. It subtracts the elements
# of the first list *from* the second list. That means:
# lists.subtractLists a b = b - a
# For CUDA
supportedCudaCapabilities = lists.intersectLists cudaFlags.cudaCapabilities supportedTorchCudaCapabilities;
unsupportedCudaCapabilities = lists.subtractLists supportedCudaCapabilities cudaFlags.cudaCapabilities;
# Use trivial.warnIf to print a warning if any unsupported GPU targets are specified.
gpuArchWarner = supported: unsupported:
trivial.throwIf (supported == [ ])
(
"No supported GPU targets specified. Requested GPU targets: "
+ strings.concatStringsSep ", " unsupported
)
supported;
# Create the gpuTargetString.
gpuTargetString = strings.concatStringsSep ";" (
if gpuTargets != [ ] then
# If gpuTargets is specified, it always takes priority.
gpuTargets
else if cudaSupport then
gpuArchWarner supportedCudaCapabilities unsupportedCudaCapabilities
else if rocmSupport then
hip.gpuTargets
else
throw "No GPU targets specified"
);
cudatoolkit_joined = symlinkJoin {
name = "${cudatoolkit.name}-unsplit";
# nccl is here purely for semantic grouping it could be moved to nativeBuildInputs
paths = [ cudatoolkit.out cudatoolkit.lib nccl.dev nccl.out ];
};
# Normally libcuda.so.1 is provided at runtime by nvidia-x11 via
# LD_LIBRARY_PATH=/run/opengl-driver/lib. We only use the stub
# libcuda.so from cudatoolkit for running tests, so that we dont have
# to recompile pytorch on every update to nvidia-x11 or the kernel.
cudaStub = linkFarm "cuda-stub" [{
name = "libcuda.so.1";
path = "${cudatoolkit}/lib/stubs/libcuda.so";
}];
cudaStubEnv = lib.optionalString cudaSupport
"LD_LIBRARY_PATH=${cudaStub}\${LD_LIBRARY_PATH:+:}$LD_LIBRARY_PATH ";
rocmtoolkit_joined = symlinkJoin {
name = "rocm-merged";
paths = [
rocm-core hip rccl miopen miopengemm rocrand rocblas
rocfft rocsparse hipsparse rocthrust rocprim hipcub
roctracer rocfft rocsolver hipfft hipsolver hipblas
rocminfo rocm-thunk rocm-comgr rocm-device-libs
rocm-runtime rocm-opencl-runtime hipify
];
};
in buildPythonPackage rec {
pname = "torch";
# Don't forget to update torch-bin to the same version.
version = "1.13.1";
format = "setuptools";
disabled = pythonOlder "3.7.0";
outputs = [
"out" # output standard python package
"dev" # output libtorch headers
"lib" # output libtorch libraries
];
src = fetchFromGitHub {
owner = "pytorch";
repo = "pytorch";
rev = "refs/tags/v${version}";
fetchSubmodules = true;
hash = "sha256-yQz+xHPw9ODRBkV9hv1th38ZmUr/fXa+K+d+cvmX3Z8=";
};
patches = lib.optionals (stdenv.isDarwin && stdenv.isx86_64) [
# pthreadpool added support for Grand Central Dispatch in April
# 2020. However, this relies on functionality (DISPATCH_APPLY_AUTO)
# that is available starting with macOS 10.13. However, our current
# base is 10.12. Until we upgrade, we can fall back on the older
# pthread support.
./pthreadpool-disable-gcd.diff
] ++ [
# PyTorch fails to build on gcc 12 due to gloo
# https://github.com/pytorch/pytorch/issues/77614
(fetchpatch {
url = "https://github.com/facebookincubator/gloo/commit/4a5e339b764261d20fc409071dc7a8b8989aa195.patch";
stripLen = 1;
extraPrefix = "third_party/gloo/";
hash = "sha256-UxR1r7F6g76BWj3GBIrSy5t+YZDCWy6mMddwx+hon5w=";
})
];
postPatch = lib.optionalString rocmSupport ''
# https://github.com/facebookincubator/gloo/pull/297
substituteInPlace third_party/gloo/cmake/Hipify.cmake \
--replace "\''${HIPIFY_COMMAND}" "python \''${HIPIFY_COMMAND}"
# Replace hard-coded rocm paths
substituteInPlace caffe2/CMakeLists.txt \
--replace "/opt/rocm" "${rocmtoolkit_joined}" \
--replace "hcc/include" "hip/include" \
--replace "rocblas/include" "include/rocblas" \
--replace "hipsparse/include" "include/hipsparse"
# Doesn't pick up the environment variable?
substituteInPlace third_party/kineto/libkineto/CMakeLists.txt \
--replace "\''$ENV{ROCM_SOURCE_DIR}" "${rocmtoolkit_joined}" \
--replace "/opt/rocm" "${rocmtoolkit_joined}"
# Strangely, this is never set in cmake
substituteInPlace cmake/public/LoadHIP.cmake \
--replace "set(ROCM_PATH \$ENV{ROCM_PATH})" \
"set(ROCM_PATH \$ENV{ROCM_PATH})''\nset(ROCM_VERSION ${lib.concatStrings (lib.intersperse "0" (lib.splitString "." hip.version))})"
'';
preConfigure = lib.optionalString cudaSupport ''
export TORCH_CUDA_ARCH_LIST="${gpuTargetString}"
export CC=${cudatoolkit.cc}/bin/gcc CXX=${cudatoolkit.cc}/bin/g++
'' + lib.optionalString (cudaSupport && cudnn != null) ''
export CUDNN_INCLUDE_DIR=${cudnn}/include
'' + lib.optionalString rocmSupport ''
export ROCM_PATH=${rocmtoolkit_joined}
export ROCM_SOURCE_DIR=${rocmtoolkit_joined}
export PYTORCH_ROCM_ARCH="${gpuTargetString}"
export CMAKE_CXX_FLAGS="-I${rocmtoolkit_joined}/include -I${rocmtoolkit_joined}/include/rocblas"
python tools/amd_build/build_amd.py
'';
# Use pytorch's custom configurations
dontUseCmakeConfigure = true;
BUILD_NAMEDTENSOR = setBool true;
BUILD_DOCS = setBool buildDocs;
# We only do an imports check, so do not build tests either.
BUILD_TEST = setBool false;
# Unlike MKL, oneDNN (née MKLDNN) is FOSS, so we enable support for
# it by default. PyTorch currently uses its own vendored version
# of oneDNN through Intel iDeep.
USE_MKLDNN = setBool mklDnnSupport;
USE_MKLDNN_CBLAS = setBool mklDnnSupport;
# Avoid using pybind11 from git submodule
# Also avoids pytorch exporting the headers of pybind11
USE_SYSTEM_BIND11 = true;
preBuild = ''
export MAX_JOBS=$NIX_BUILD_CORES
${python.pythonForBuild.interpreter} setup.py build --cmake-only
${cmake}/bin/cmake build
'';
preFixup = ''
function join_by { local IFS="$1"; shift; echo "$*"; }
function strip2 {
IFS=':'
read -ra RP <<< $(patchelf --print-rpath $1)
IFS=' '
RP_NEW=$(join_by : ''${RP[@]:2})
patchelf --set-rpath \$ORIGIN:''${RP_NEW} "$1"
}
for f in $(find ''${out} -name 'libcaffe2*.so')
do
strip2 $f
done
'';
# Override the (weirdly) wrong version set by default. See
# https://github.com/NixOS/nixpkgs/pull/52437#issuecomment-449718038
# https://github.com/pytorch/pytorch/blob/v1.0.0/setup.py#L267
PYTORCH_BUILD_VERSION = version;
PYTORCH_BUILD_NUMBER = 0;
USE_SYSTEM_NCCL = setBool useSystemNccl; # don't build pytorch's third_party NCCL
# Suppress a weird warning in mkl-dnn, part of ideep in pytorch
# (upstream seems to have fixed this in the wrong place?)
# https://github.com/intel/mkl-dnn/commit/8134d346cdb7fe1695a2aa55771071d455fae0bc
# https://github.com/pytorch/pytorch/issues/22346
#
# Also of interest: pytorch ignores CXXFLAGS uses CFLAGS for both C and C++:
# https://github.com/pytorch/pytorch/blob/v1.11.0/setup.py#L17
env.NIX_CFLAGS_COMPILE = toString ((lib.optionals (blas.implementation == "mkl") [ "-Wno-error=array-bounds" ]
# Suppress gcc regression: avx512 math function raises uninitialized variable warning
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105593
# See also: Fails to compile with GCC 12.1.0 https://github.com/pytorch/pytorch/issues/77939
++ lib.optionals stdenv.cc.isGNU [ "-Wno-error=maybe-uninitialized" "-Wno-error=uninitialized" ]));
nativeBuildInputs = [
cmake
util-linux
which
ninja
pybind11
removeReferencesTo
] ++ lib.optionals cudaSupport [ cudatoolkit_joined ]
++ lib.optionals rocmSupport [ rocmtoolkit_joined ];
buildInputs = [ blas blas.provider pybind11 ]
++ lib.optionals stdenv.isLinux [ linuxHeaders_5_19 ] # TMP: avoid "flexible array member" errors for now
++ lib.optionals cudaSupport [ cudnn nccl ]
++ lib.optionals rocmSupport [ openmp ]
++ lib.optionals (cudaSupport || rocmSupport) [ magma ]
++ lib.optionals stdenv.isLinux [ numactl ]
++ lib.optionals stdenv.isDarwin [ Accelerate CoreServices libobjc ];
propagatedBuildInputs = [
cffi
click
numpy
pyyaml
typing-extensions
# the following are required for tensorboard support
pillow six future tensorboard protobuf
] ++ lib.optionals MPISupport [ mpi ]
++ lib.optionals rocmSupport [ rocmtoolkit_joined ];
# Tests take a long time and may be flaky, so just sanity-check imports
doCheck = false;
pythonImportsCheck = [
"torch"
];
nativeCheckInputs = [ hypothesis ninja psutil ];
checkPhase = with lib.versions; with lib.strings; concatStringsSep " " [
"runHook preCheck"
cudaStubEnv
"${python.interpreter} test/run_test.py"
"--exclude"
(concatStringsSep " " [
"utils" # utils requires git, which is not allowed in the check phase
# "dataloader" # psutils correctly finds and triggers multiprocessing, but is too sandboxed to run -- resulting in numerous errors
# ^^^^^^^^^^^^ NOTE: while test_dataloader does return errors, these are acceptable errors and do not interfere with the build
# tensorboard has acceptable failures for pytorch 1.3.x due to dependencies on tensorboard-plugins
(optionalString (majorMinor version == "1.3" ) "tensorboard")
])
"runHook postCheck"
];
postInstall = ''
find "$out/${python.sitePackages}/torch/include" "$out/${python.sitePackages}/torch/lib" -type f -exec remove-references-to -t ${stdenv.cc} '{}' +
mkdir $dev
cp -r $out/${python.sitePackages}/torch/include $dev/include
cp -r $out/${python.sitePackages}/torch/share $dev/share
# Fix up library paths for split outputs
substituteInPlace \
$dev/share/cmake/Torch/TorchConfig.cmake \
--replace \''${TORCH_INSTALL_PREFIX}/lib "$lib/lib"
substituteInPlace \
$dev/share/cmake/Caffe2/Caffe2Targets-release.cmake \
--replace \''${_IMPORT_PREFIX}/lib "$lib/lib"
mkdir $lib
mv $out/${python.sitePackages}/torch/lib $lib/lib
ln -s $lib/lib $out/${python.sitePackages}/torch/lib
'' + lib.optionalString rocmSupport ''
substituteInPlace $dev/share/cmake/Tensorpipe/TensorpipeTargets-release.cmake \
--replace "\''${_IMPORT_PREFIX}/lib64" "$lib/lib"
substituteInPlace $dev/share/cmake/ATen/ATenConfig.cmake \
--replace "/build/source/torch/include" "$dev/include"
'';
postFixup = lib.optionalString stdenv.isDarwin ''
for f in $(ls $lib/lib/*.dylib); do
install_name_tool -id $lib/lib/$(basename $f) $f || true
done
install_name_tool -change @rpath/libshm.dylib $lib/lib/libshm.dylib $lib/lib/libtorch_python.dylib
install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libtorch_python.dylib
install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch_python.dylib
install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch.dylib
install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libshm.dylib
install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libshm.dylib
'';
# Builds in 2+h with 2 cores, and ~15m with a big-parallel builder.
requiredSystemFeatures = [ "big-parallel" ];
passthru = {
inherit cudaSupport cudaPackages gpuTargetString;
cudaCapabilities = supportedCudaCapabilities;
# At least for 1.10.2 `torch.fft` is unavailable unless BLAS provider is MKL. This attribute allows for easy detection of its availability.
blasProvider = blas.provider;
};
meta = with lib; {
changelog = "https://github.com/pytorch/pytorch/releases/tag/v${version}";
# keep PyTorch in the description so the package can be found under that name on search.nixos.org
description = "PyTorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration";
homepage = "https://pytorch.org/";
license = licenses.bsd3;
maintainers = with maintainers; [ teh thoughtpolice tscholak ]; # tscholak esp. for darwin-related builds
platforms = with platforms; linux ++ lib.optionals (!cudaSupport || !rocmSupport) darwin;
broken = rocmSupport && cudaSupport; # CUDA and ROCm are mutually exclusive
};
}