When executing a Perl script, it is possible you get an error such as <literal>./myscript.pl: bad interpreter: /usr/bin/perl: no such file or directory</literal>. This happens when the script expects Perl to be installed at <filename>/usr/bin/perl</filename>, which is not the case when using Perl from nixpkgs. You can fix the script by changing the first line to:
<programlisting>
#!/usr/bin/env perl
</programlisting>
to take the Perl installation from the <literal>PATH</literal> environment variable, or invoke Perl directly with:
When the script is using a Perl library that is not installed globally, you might get an error such as <literal>Can't locate DB_File.pm in @INC (you may need to install the DB_File module)</literal>. In that case, you can use <command>nix-shell</command> to start an ad-hoc shell with that library installed, for instance:
If you are always using the script in places where <command>nix-shell</command> is available, you can embed the <command>nix-shell</command> invocation in the shebang like this:
Nixpkgs provides a function <varname>buildPerlPackage</varname>, a generic package builder function for any Perl package that has a standard <varname>Makefile.PL</varname>. It’s implemented in <link
xlink:href="https://github.com/NixOS/nixpkgs/blob/master/pkgs/top-level/perl-packages.nix"><filename>pkgs/top-level/perl-packages.nix</filename></link>, rather than <filename>pkgs/all-packages.nix</filename>. Most Perl packages are so straight-forward to build that they are defined here directly, rather than having a separate function for each package called from <filename>perl-packages.nix</filename>. However, more complicated packages should be put in a separate file, typically in <filename>pkgs/development/perl-modules</filename>. Here is an example of the former:
Note the use of <literal>mirror://cpan/</literal>, and the <literal>${name}</literal> in the URL definition to ensure that the name attribute is consistent with the source that we’re actually downloading. Perl packages are made available in <filename>all-packages.nix</filename> through the variable <varname>perlPackages</varname>. For instance, if you have a package that needs <varname>ClassC3</varname>, you would typically write
<programlisting>
foo = import ../path/to/foo.nix {
inherit stdenv fetchurl ...;
inherit (perlPackages) ClassC3;
};
</programlisting>
in <filename>all-packages.nix</filename>. You can test building a Perl package as follows:
<screen>
<prompt>$ </prompt>nix-build -A perlPackages.ClassC3
</screen>
<varname>buildPerlPackage</varname> adds <literal>perl-</literal> to the start of the name attribute, so the package above is actually called <literal>perl-Class-C3-0.21</literal>. So to install it, you can say:
<screen>
<prompt>$ </prompt>nix-env -i perl-Class-C3
</screen>
(Of course you can also install using the attribute name: <literal>nix-env -i -A perlPackages.ClassC3</literal>.)
</para>
<para>
So what does <varname>buildPerlPackage</varname> do? It does the following:
<orderedlist>
<listitem>
<para>
In the configure phase, it calls <literal>perl Makefile.PL</literal> to generate a Makefile. You can set the variable <varname>makeMakerFlags</varname> to pass flags to <filename>Makefile.PL</filename>
</para>
</listitem>
<listitem>
<para>
It adds the contents of the <envar>PERL5LIB</envar> environment variable to <literal>#! .../bin/perl</literal> line of Perl scripts as <literal>-I<replaceable>dir</replaceable></literal> flags. This ensures that a script can find its dependencies. (This can cause this shebang line to become too long for Darwin to handle; see the note below.)
</para>
</listitem>
<listitem>
<para>
In the fixup phase, it writes the propagated build inputs (<varname>propagatedBuildInputs</varname>) to the file <filename>$out/nix-support/propagated-user-env-packages</filename>. <command>nix-env</command> recursively installs all packages listed in this file when you install a package that has it. This ensures that a Perl package can find its dependencies.
</para>
</listitem>
</orderedlist>
</para>
<para>
<varname>buildPerlPackage</varname> is built on top of <varname>stdenv</varname>, so everything can be customised in the usual way. For instance, the <literal>BerkeleyDB</literal> module has a <varname>preConfigure</varname> hook to generate a configuration file used by <filename>Makefile.PL</filename>:
Dependencies on other Perl packages can be specified in the <varname>buildInputs</varname> and <varname>propagatedBuildInputs</varname> attributes. If something is exclusively a build-time dependency, use <varname>buildInputs</varname>; if it’s (also) a runtime dependency, use <varname>propagatedBuildInputs</varname>. For instance, this builds a Perl module that has runtime dependencies on a bunch of other modules:
On Darwin, if a script has too many <literal>-I<replaceable>dir</replaceable></literal> flags in its first line (its “shebang line”), it will not run. This can be worked around by calling the <literal>shortenPerlShebang</literal> function from the <literal>postInstall</literal> phase:
This will remove the <literal>-I</literal> flags from the shebang line, rewrite them in the <literal>use lib</literal> form, and put them on the next line instead. This function can be given any number of Perl scripts as arguments; it will modify them in-place.
</para>
<sectionxml:id="ssec-generation-from-CPAN">
<title>Generation from CPAN</title>
<para>
Nix expressions for Perl packages can be generated (almost) automatically from CPAN. This is done by the program <command>nix-generate-from-cpan</command>, which can be installed as follows:
This program takes a Perl module name, looks it up on CPAN, fetches and unpacks the corresponding package, and prints a Nix expression on standard output. For example:
license = with stdenv.lib.licenses; [ artistic1 gpl1Plus ];
};
};
</screen>
The output can be pasted into <filename>pkgs/top-level/perl-packages.nix</filename> or wherever else you need it.
</para>
</section>
<sectionxml:id="ssec-perl-cross-compilation">
<title>Cross-compiling modules</title>
<para>
Nixpkgs has experimental support for cross-compiling Perl modules. In many cases, it will just work out of the box, even for modules with native extensions. Sometimes, however, the Makefile.PL for a module may (indirectly) import a native module. In that case, you will need to make a stub for that module that will satisfy the Makefile.PL and install it into <filename>lib/perl5/site_perl/cross_perl/${perl.version}</filename>. See the <varname>postInstall</varname> for <varname>DBI</varname> for an example.