depot/third_party/nixpkgs/pkgs/development/python-modules/torch/default.nix

705 lines
24 KiB
Nix
Raw Normal View History

{
stdenv,
lib,
fetchFromGitHub,
buildPythonPackage,
python,
config,
cudaSupport ? config.cudaSupport,
cudaPackages,
autoAddDriverRunpath,
effectiveMagma ?
if cudaSupport then
magma-cuda-static
else if rocmSupport then
magma-hip
else
magma,
magma,
magma-hip,
magma-cuda-static,
# Use the system NCCL as long as we're targeting CUDA on a supported platform.
useSystemNccl ? (cudaSupport && !cudaPackages.nccl.meta.unsupported || rocmSupport),
MPISupport ? false,
mpi,
buildDocs ? false,
# tests.cudaAvailable:
callPackage,
# Native build inputs
cmake,
symlinkJoin,
which,
pybind11,
removeReferencesTo,
# Build inputs
darwin,
numactl,
# Propagated build inputs
astunparse,
fsspec,
filelock,
jinja2,
networkx,
sympy,
numpy,
pyyaml,
cffi,
click,
typing-extensions,
# ROCm build and `torch.compile` requires `triton`
tritonSupport ? (!stdenv.hostPlatform.isDarwin),
triton,
# TODO: 1. callPackage needs to learn to distinguish between the task
# of "asking for an attribute from the parent scope" and
# the task of "exposing a formal parameter in .override".
# TODO: 2. We should probably abandon attributes such as `torchWithCuda` (etc.)
# as they routinely end up consuming the wrong arguments\
# (dependencies without cuda support).
# Instead we should rely on overlays and nixpkgsFun.
# (@SomeoneSerge)
_tritonEffective ? if cudaSupport then triton-cuda else triton,
triton-cuda,
# Unit tests
hypothesis,
psutil,
# Disable MKLDNN on aarch64-darwin, it negatively impacts performance,
# this is also what official pytorch build does
mklDnnSupport ? !(stdenv.hostPlatform.isDarwin && stdenv.hostPlatform.isAarch64),
# virtual pkg that consistently instantiates blas across nixpkgs
# See https://github.com/NixOS/nixpkgs/pull/83888
blas,
# ninja (https://ninja-build.org) must be available to run C++ extensions tests,
ninja,
# dependencies for torch.utils.tensorboard
pillow,
six,
future,
tensorboard,
protobuf,
pythonOlder,
# ROCm dependencies
rocmSupport ? config.rocmSupport,
rocmPackages_5,
gpuTargets ? [ ],
}:
let
inherit (lib)
attrsets
lists
strings
trivial
;
inherit (cudaPackages) cudaFlags cudnn nccl;
triton = throw "python3Packages.torch: use _tritonEffective instead of triton to avoid divergence";
rocmPackages = rocmPackages_5;
setBool = v: if v then "1" else "0";
# https://github.com/pytorch/pytorch/blob/v2.4.0/torch/utils/cpp_extension.py#L1953
supportedTorchCudaCapabilities =
let
real = [
"3.5"
"3.7"
"5.0"
"5.2"
"5.3"
"6.0"
"6.1"
"6.2"
"7.0"
"7.2"
"7.5"
"8.0"
"8.6"
"8.7"
"8.9"
"9.0"
"9.0a"
];
ptx = lists.map (x: "${x}+PTX") real;
in
real ++ ptx;
# NOTE: The lists.subtractLists function is perhaps a bit unintuitive. It subtracts the elements
# of the first list *from* the second list. That means:
# lists.subtractLists a b = b - a
# For CUDA
supportedCudaCapabilities = lists.intersectLists cudaFlags.cudaCapabilities supportedTorchCudaCapabilities;
unsupportedCudaCapabilities = lists.subtractLists supportedCudaCapabilities cudaFlags.cudaCapabilities;
# Use trivial.warnIf to print a warning if any unsupported GPU targets are specified.
gpuArchWarner =
supported: unsupported:
trivial.throwIf (supported == [ ]) (
"No supported GPU targets specified. Requested GPU targets: "
+ strings.concatStringsSep ", " unsupported
) supported;
# Create the gpuTargetString.
gpuTargetString = strings.concatStringsSep ";" (
if gpuTargets != [ ] then
# If gpuTargets is specified, it always takes priority.
gpuTargets
else if cudaSupport then
gpuArchWarner supportedCudaCapabilities unsupportedCudaCapabilities
else if rocmSupport then
rocmPackages.clr.gpuTargets
else
throw "No GPU targets specified"
);
rocmtoolkit_joined = symlinkJoin {
name = "rocm-merged";
paths = with rocmPackages; [
rocm-core
clr
rccl
miopen
miopengemm
rocrand
rocblas
rocsparse
hipsparse
rocthrust
rocprim
hipcub
roctracer
rocfft
rocsolver
hipfft
hipsolver
hipblas
rocminfo
rocm-thunk
rocm-comgr
rocm-device-libs
rocm-runtime
clr.icd
hipify
];
# Fix `setuptools` not being found
postBuild = ''
rm -rf $out/nix-support
'';
};
brokenConditions = attrsets.filterAttrs (_: cond: cond) {
"CUDA and ROCm are mutually exclusive" = cudaSupport && rocmSupport;
"CUDA is not targeting Linux" = cudaSupport && !stdenv.hostPlatform.isLinux;
"Unsupported CUDA version" =
cudaSupport
&& !(builtins.elem cudaPackages.cudaMajorVersion [
"11"
"12"
]);
"MPI cudatoolkit does not match cudaPackages.cudatoolkit" =
MPISupport && cudaSupport && (mpi.cudatoolkit != cudaPackages.cudatoolkit);
# This used to be a deep package set comparison between cudaPackages and
# effectiveMagma.cudaPackages, making torch too strict in cudaPackages.
# In particular, this triggered warnings from cuda's `aliases.nix`
"Magma cudaPackages does not match cudaPackages" =
cudaSupport && (effectiveMagma.cudaPackages.cudaVersion != cudaPackages.cudaVersion);
"Rocm support is currently broken because `rocmPackages.hipblaslt` is unpackaged. (2024-06-09)" =
rocmSupport;
};
in
buildPythonPackage rec {
pname = "torch";
# Don't forget to update torch-bin to the same version.
version = "2.4.1";
pyproject = true;
disabled = pythonOlder "3.8.0";
outputs = [
"out" # output standard python package
"dev" # output libtorch headers
"lib" # output libtorch libraries
"cxxdev" # propagated deps for the cmake consumers of torch
];
cudaPropagateToOutput = "cxxdev";
src = fetchFromGitHub {
owner = "pytorch";
repo = "pytorch";
rev = "refs/tags/v${version}";
fetchSubmodules = true;
hash = "sha256-x/zM/57syr46CP1TfGaefSjzvNm4jJbWFZGVGyzPMg8=";
};
patches =
[
# Allow setting PYTHON_LIB_REL_PATH with an environment variable.
# https://github.com/pytorch/pytorch/pull/128419
./passthrough-python-lib-rel-path.patch
./0001-cmake.py-propagate-cmakeFlags-from-environment.patch
]
++ lib.optionals cudaSupport [ ./fix-cmake-cuda-toolkit.patch ]
++ lib.optionals (stdenv.hostPlatform.isDarwin && stdenv.hostPlatform.isx86_64) [
# pthreadpool added support for Grand Central Dispatch in April
# 2020. However, this relies on functionality (DISPATCH_APPLY_AUTO)
# that is available starting with macOS 10.13. However, our current
# base is 10.12. Until we upgrade, we can fall back on the older
# pthread support.
./pthreadpool-disable-gcd.diff
]
++ lib.optionals stdenv.hostPlatform.isLinux [
# Propagate CUPTI to Kineto by overriding the search path with environment variables.
# https://github.com/pytorch/pytorch/pull/108847
./pytorch-pr-108847.patch
];
postPatch =
''
substituteInPlace cmake/public/cuda.cmake \
--replace-fail \
'message(FATAL_ERROR "Found two conflicting CUDA' \
'message(WARNING "Found two conflicting CUDA' \
--replace-warn \
"set(CUDAToolkit_ROOT" \
"# Upstream: set(CUDAToolkit_ROOT"
substituteInPlace third_party/gloo/cmake/Cuda.cmake \
--replace-warn "find_package(CUDAToolkit 7.0" "find_package(CUDAToolkit"
''
+ lib.optionalString rocmSupport ''
# https://github.com/facebookincubator/gloo/pull/297
substituteInPlace third_party/gloo/cmake/Hipify.cmake \
--replace "\''${HIPIFY_COMMAND}" "python \''${HIPIFY_COMMAND}"
# Replace hard-coded rocm paths
substituteInPlace caffe2/CMakeLists.txt \
--replace "/opt/rocm" "${rocmtoolkit_joined}" \
--replace "hcc/include" "hip/include" \
--replace "rocblas/include" "include/rocblas" \
--replace "hipsparse/include" "include/hipsparse"
# Doesn't pick up the environment variable?
substituteInPlace third_party/kineto/libkineto/CMakeLists.txt \
--replace "\''$ENV{ROCM_SOURCE_DIR}" "${rocmtoolkit_joined}" \
--replace "/opt/rocm" "${rocmtoolkit_joined}"
# Strangely, this is never set in cmake
substituteInPlace cmake/public/LoadHIP.cmake \
--replace "set(ROCM_PATH \$ENV{ROCM_PATH})" \
"set(ROCM_PATH \$ENV{ROCM_PATH})''\nset(ROCM_VERSION ${lib.concatStrings (lib.intersperse "0" (lib.splitVersion rocmPackages.clr.version))})"
''
# Detection of NCCL version doesn't work particularly well when using the static binary.
+ lib.optionalString cudaSupport ''
substituteInPlace cmake/Modules/FindNCCL.cmake \
--replace \
'message(FATAL_ERROR "Found NCCL header version and library version' \
'message(WARNING "Found NCCL header version and library version'
''
# Remove PyTorch's FindCUDAToolkit.cmake and use CMake's default.
# NOTE: Parts of pytorch rely on unmaintained FindCUDA.cmake with custom patches to support e.g.
# newer architectures (sm_90a). We do want to delete vendored patches, but have to keep them
# until https://github.com/pytorch/pytorch/issues/76082 is addressed
+ lib.optionalString cudaSupport ''
rm cmake/Modules/FindCUDAToolkit.cmake
''
# error: no member named 'aligned_alloc' in the global namespace; did you mean simply 'aligned_alloc'
# This lib overrided aligned_alloc hence the error message. Tltr: his function is linkable but not in header.
+
lib.optionalString
(stdenv.hostPlatform.isDarwin && lib.versionOlder stdenv.hostPlatform.darwinSdkVersion "11.0")
''
substituteInPlace third_party/pocketfft/pocketfft_hdronly.h --replace-fail '#if (__cplusplus >= 201703L) && (!defined(__MINGW32__)) && (!defined(_MSC_VER))
inline void *aligned_alloc(size_t align, size_t size)' '#if 0
inline void *aligned_alloc(size_t align, size_t size)'
'';
# NOTE(@connorbaker): Though we do not disable Gloo or MPI when building with CUDA support, caution should be taken
# when using the different backends. Gloo's GPU support isn't great, and MPI and CUDA can't be used at the same time
# without extreme care to ensure they don't lock each other out of shared resources.
# For more, see https://github.com/open-mpi/ompi/issues/7733#issuecomment-629806195.
preConfigure =
lib.optionalString cudaSupport ''
export TORCH_CUDA_ARCH_LIST="${gpuTargetString}"
export CUPTI_INCLUDE_DIR=${lib.getDev cudaPackages.cuda_cupti}/include
export CUPTI_LIBRARY_DIR=${lib.getLib cudaPackages.cuda_cupti}/lib
''
+ lib.optionalString (cudaSupport && cudaPackages ? cudnn) ''
export CUDNN_INCLUDE_DIR=${lib.getLib cudnn}/include
export CUDNN_LIB_DIR=${cudnn.lib}/lib
''
+ lib.optionalString rocmSupport ''
export ROCM_PATH=${rocmtoolkit_joined}
export ROCM_SOURCE_DIR=${rocmtoolkit_joined}
export PYTORCH_ROCM_ARCH="${gpuTargetString}"
export CMAKE_CXX_FLAGS="-I${rocmtoolkit_joined}/include -I${rocmtoolkit_joined}/include/rocblas"
python tools/amd_build/build_amd.py
'';
# Use pytorch's custom configurations
dontUseCmakeConfigure = true;
# causes possible redefinition of _FORTIFY_SOURCE
hardeningDisable = [ "fortify3" ];
BUILD_NAMEDTENSOR = setBool true;
BUILD_DOCS = setBool buildDocs;
# We only do an imports check, so do not build tests either.
BUILD_TEST = setBool false;
# Unlike MKL, oneDNN (née MKLDNN) is FOSS, so we enable support for
# it by default. PyTorch currently uses its own vendored version
# of oneDNN through Intel iDeep.
USE_MKLDNN = setBool mklDnnSupport;
USE_MKLDNN_CBLAS = setBool mklDnnSupport;
# Avoid using pybind11 from git submodule
# Also avoids pytorch exporting the headers of pybind11
USE_SYSTEM_PYBIND11 = true;
# NB technical debt: building without NNPACK as workaround for missing `six`
USE_NNPACK = 0;
cmakeFlags =
[
# (lib.cmakeBool "CMAKE_FIND_DEBUG_MODE" true)
(lib.cmakeFeature "CUDAToolkit_VERSION" cudaPackages.cudaVersion)
]
++ lib.optionals cudaSupport [
# Unbreaks version discovery in enable_language(CUDA) when wrapping nvcc with ccache
# Cf. https://gitlab.kitware.com/cmake/cmake/-/issues/26363
(lib.cmakeFeature "CMAKE_CUDA_COMPILER_TOOLKIT_VERSION" cudaPackages.cudaVersion)
];
preBuild = ''
export MAX_JOBS=$NIX_BUILD_CORES
${python.pythonOnBuildForHost.interpreter} setup.py build --cmake-only
${cmake}/bin/cmake build
'';
preFixup = ''
function join_by { local IFS="$1"; shift; echo "$*"; }
function strip2 {
IFS=':'
read -ra RP <<< $(patchelf --print-rpath $1)
IFS=' '
RP_NEW=$(join_by : ''${RP[@]:2})
patchelf --set-rpath \$ORIGIN:''${RP_NEW} "$1"
}
for f in $(find ''${out} -name 'libcaffe2*.so')
do
strip2 $f
done
'';
# Override the (weirdly) wrong version set by default. See
# https://github.com/NixOS/nixpkgs/pull/52437#issuecomment-449718038
# https://github.com/pytorch/pytorch/blob/v1.0.0/setup.py#L267
PYTORCH_BUILD_VERSION = version;
PYTORCH_BUILD_NUMBER = 0;
# In-tree builds of NCCL are not supported.
# Use NCCL when cudaSupport is enabled and nccl is available.
USE_NCCL = setBool useSystemNccl;
USE_SYSTEM_NCCL = USE_NCCL;
USE_STATIC_NCCL = USE_NCCL;
# Set the correct Python library path, broken since
# https://github.com/pytorch/pytorch/commit/3d617333e
PYTHON_LIB_REL_PATH = "${placeholder "out"}/${python.sitePackages}";
# Suppress a weird warning in mkl-dnn, part of ideep in pytorch
# (upstream seems to have fixed this in the wrong place?)
# https://github.com/intel/mkl-dnn/commit/8134d346cdb7fe1695a2aa55771071d455fae0bc
# https://github.com/pytorch/pytorch/issues/22346
#
# Also of interest: pytorch ignores CXXFLAGS uses CFLAGS for both C and C++:
# https://github.com/pytorch/pytorch/blob/v1.11.0/setup.py#L17
env.NIX_CFLAGS_COMPILE = toString (
(
lib.optionals (blas.implementation == "mkl") [ "-Wno-error=array-bounds" ]
# Suppress gcc regression: avx512 math function raises uninitialized variable warning
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105593
# See also: Fails to compile with GCC 12.1.0 https://github.com/pytorch/pytorch/issues/77939
++ lib.optionals (stdenv.cc.isGNU && lib.versionAtLeast stdenv.cc.version "12.0.0") [
"-Wno-error=maybe-uninitialized"
"-Wno-error=uninitialized"
]
# Since pytorch 2.0:
# gcc-12.2.0/include/c++/12.2.0/bits/new_allocator.h:158:33: error: void operator delete(void*, std::size_t)
# ... called on pointer <unknown> with nonzero offset [1, 9223372036854775800] [-Werror=free-nonheap-object]
++ lib.optionals (stdenv.cc.isGNU && lib.versions.major stdenv.cc.version == "12") [
"-Wno-error=free-nonheap-object"
]
# .../source/torch/csrc/autograd/generated/python_functions_0.cpp:85:3:
# error: cast from ... to ... converts to incompatible function type [-Werror,-Wcast-function-type-strict]
++ lib.optionals (stdenv.cc.isClang && lib.versionAtLeast stdenv.cc.version "16") [
"-Wno-error=cast-function-type-strict"
# Suppresses the most spammy warnings.
# This is mainly to fix https://github.com/NixOS/nixpkgs/issues/266895.
]
++ lib.optionals rocmSupport [
"-Wno-#warnings"
"-Wno-cpp"
"-Wno-unknown-warning-option"
"-Wno-ignored-attributes"
"-Wno-deprecated-declarations"
"-Wno-defaulted-function-deleted"
"-Wno-pass-failed"
]
++ [
"-Wno-unused-command-line-argument"
"-Wno-uninitialized"
"-Wno-array-bounds"
"-Wno-free-nonheap-object"
"-Wno-unused-result"
]
++ lib.optionals stdenv.cc.isGNU [
"-Wno-maybe-uninitialized"
"-Wno-stringop-overflow"
]
)
);
nativeBuildInputs =
[
cmake
which
ninja
pybind11
removeReferencesTo
]
++ lib.optionals cudaSupport (
with cudaPackages;
[
autoAddDriverRunpath
cuda_nvcc
]
)
++ lib.optionals rocmSupport [ rocmtoolkit_joined ];
buildInputs =
[
blas
blas.provider
]
++ lib.optionals cudaSupport (
with cudaPackages;
[
cuda_cccl # <thrust/*>
cuda_cudart # cuda_runtime.h and libraries
cuda_cupti # For kineto
cuda_nvcc # crt/host_config.h; even though we include this in nativeBuildInputs, it's needed here too
cuda_nvml_dev # <nvml.h>
cuda_nvrtc
cuda_nvtx # -llibNVToolsExt
libcublas
libcufft
libcurand
libcusolver
libcusparse
]
++ lists.optionals (cudaPackages ? cudnn) [ cudnn ]
++ lists.optionals useSystemNccl [
# Some platforms do not support NCCL (i.e., Jetson)
nccl # Provides nccl.h AND a static copy of NCCL!
]
++ lists.optionals (strings.versionOlder cudaVersion "11.8") [
cuda_nvprof # <cuda_profiler_api.h>
]
++ lists.optionals (strings.versionAtLeast cudaVersion "11.8") [
cuda_profiler_api # <cuda_profiler_api.h>
]
)
++ lib.optionals rocmSupport [ rocmPackages.llvm.openmp ]
++ lib.optionals (cudaSupport || rocmSupport) [ effectiveMagma ]
++ lib.optionals stdenv.hostPlatform.isLinux [ numactl ]
++ lib.optionals stdenv.hostPlatform.isDarwin [
darwin.apple_sdk.frameworks.Accelerate
darwin.apple_sdk.frameworks.CoreServices
darwin.libobjc
]
++ lib.optionals tritonSupport [ _tritonEffective ]
++ lib.optionals MPISupport [ mpi ]
++ lib.optionals rocmSupport [ rocmtoolkit_joined ];
dependencies = [
astunparse
cffi
click
numpy
pyyaml
# From install_requires:
fsspec
filelock
typing-extensions
sympy
networkx
jinja2
# the following are required for tensorboard support
pillow
six
future
tensorboard
protobuf
# torch/csrc requires `pybind11` at runtime
pybind11
] ++ lib.optionals tritonSupport [ _tritonEffective ];
propagatedCxxBuildInputs =
[ ] ++ lib.optionals MPISupport [ mpi ] ++ lib.optionals rocmSupport [ rocmtoolkit_joined ];
# Tests take a long time and may be flaky, so just sanity-check imports
doCheck = false;
pythonImportsCheck = [ "torch" ];
nativeCheckInputs = [
hypothesis
ninja
psutil
];
checkPhase =
with lib.versions;
with lib.strings;
concatStringsSep " " [
"runHook preCheck"
"${python.interpreter} test/run_test.py"
"--exclude"
(concatStringsSep " " [
"utils" # utils requires git, which is not allowed in the check phase
# "dataloader" # psutils correctly finds and triggers multiprocessing, but is too sandboxed to run -- resulting in numerous errors
# ^^^^^^^^^^^^ NOTE: while test_dataloader does return errors, these are acceptable errors and do not interfere with the build
# tensorboard has acceptable failures for pytorch 1.3.x due to dependencies on tensorboard-plugins
(optionalString (majorMinor version == "1.3") "tensorboard")
])
"runHook postCheck"
];
pythonRemoveDeps = [
# In our dist-info the name is just "triton"
"pytorch-triton-rocm"
];
postInstall =
''
find "$out/${python.sitePackages}/torch/include" "$out/${python.sitePackages}/torch/lib" -type f -exec remove-references-to -t ${stdenv.cc} '{}' +
mkdir $dev
cp -r $out/${python.sitePackages}/torch/include $dev/include
cp -r $out/${python.sitePackages}/torch/share $dev/share
# Fix up library paths for split outputs
substituteInPlace \
$dev/share/cmake/Torch/TorchConfig.cmake \
--replace \''${TORCH_INSTALL_PREFIX}/lib "$lib/lib"
substituteInPlace \
$dev/share/cmake/Caffe2/Caffe2Targets-release.cmake \
--replace \''${_IMPORT_PREFIX}/lib "$lib/lib"
mkdir $lib
mv $out/${python.sitePackages}/torch/lib $lib/lib
ln -s $lib/lib $out/${python.sitePackages}/torch/lib
''
+ lib.optionalString rocmSupport ''
substituteInPlace $dev/share/cmake/Tensorpipe/TensorpipeTargets-release.cmake \
--replace "\''${_IMPORT_PREFIX}/lib64" "$lib/lib"
substituteInPlace $dev/share/cmake/ATen/ATenConfig.cmake \
--replace "/build/source/torch/include" "$dev/include"
'';
postFixup =
''
mkdir -p "$cxxdev/nix-support"
printWords "''${propagatedCxxBuildInputs[@]}" >> "$cxxdev/nix-support/propagated-build-inputs"
''
+ lib.optionalString stdenv.hostPlatform.isDarwin ''
for f in $(ls $lib/lib/*.dylib); do
install_name_tool -id $lib/lib/$(basename $f) $f || true
done
install_name_tool -change @rpath/libshm.dylib $lib/lib/libshm.dylib $lib/lib/libtorch_python.dylib
install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libtorch_python.dylib
install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch_python.dylib
install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch.dylib
install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libshm.dylib
install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libshm.dylib
'';
# See https://github.com/NixOS/nixpkgs/issues/296179
#
# This is a quick hack to add `libnvrtc` to the runpath so that torch can find
# it when it is needed at runtime.
extraRunpaths = lib.optionals cudaSupport [ "${lib.getLib cudaPackages.cuda_nvrtc}/lib" ];
postPhases = lib.optionals stdenv.hostPlatform.isLinux [ "postPatchelfPhase" ];
postPatchelfPhase = ''
while IFS= read -r -d $'\0' elf ; do
for extra in $extraRunpaths ; do
echo patchelf "$elf" --add-rpath "$extra" >&2
patchelf "$elf" --add-rpath "$extra"
done
done < <(
find "''${!outputLib}" "$out" -type f -iname '*.so' -print0
)
'';
# Builds in 2+h with 2 cores, and ~15m with a big-parallel builder.
requiredSystemFeatures = [ "big-parallel" ];
passthru = {
inherit
cudaSupport
cudaPackages
rocmSupport
rocmPackages
;
cudaCapabilities = if cudaSupport then supportedCudaCapabilities else [ ];
# At least for 1.10.2 `torch.fft` is unavailable unless BLAS provider is MKL. This attribute allows for easy detection of its availability.
blasProvider = blas.provider;
# To help debug when a package is broken due to CUDA support
inherit brokenConditions;
tests = callPackage ./tests.nix { };
};
meta = {
changelog = "https://github.com/pytorch/pytorch/releases/tag/v${version}";
# keep PyTorch in the description so the package can be found under that name on search.nixos.org
description = "PyTorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration";
homepage = "https://pytorch.org/";
license = lib.licenses.bsd3;
maintainers = with lib.maintainers; [
teh
thoughtpolice
tscholak
]; # tscholak esp. for darwin-related builds
platforms =
lib.platforms.linux
++ lib.optionals (!cudaSupport && !rocmSupport) lib.platforms.darwin;
broken = builtins.any trivial.id (builtins.attrValues brokenConditions);
};
}