{ stdenv, lib, fetchFromGitHub, buildPythonPackage, python, config, cudaSupport ? config.cudaSupport, cudaPackages, autoAddDriverRunpath, effectiveMagma ? if cudaSupport then magma-cuda-static else if rocmSupport then magma-hip else magma, magma, magma-hip, magma-cuda-static, # Use the system NCCL as long as we're targeting CUDA on a supported platform. useSystemNccl ? (cudaSupport && !cudaPackages.nccl.meta.unsupported || rocmSupport), MPISupport ? false, mpi, buildDocs ? false, # tests.cudaAvailable: callPackage, # Native build inputs cmake, symlinkJoin, which, pybind11, removeReferencesTo, # Build inputs darwin, numactl, # Propagated build inputs astunparse, fsspec, filelock, jinja2, networkx, sympy, numpy, pyyaml, cffi, click, typing-extensions, # ROCm build and `torch.compile` requires `triton` tritonSupport ? (!stdenv.hostPlatform.isDarwin), triton, # TODO: 1. callPackage needs to learn to distinguish between the task # of "asking for an attribute from the parent scope" and # the task of "exposing a formal parameter in .override". # TODO: 2. We should probably abandon attributes such as `torchWithCuda` (etc.) # as they routinely end up consuming the wrong arguments\ # (dependencies without cuda support). # Instead we should rely on overlays and nixpkgsFun. # (@SomeoneSerge) _tritonEffective ? if cudaSupport then triton-cuda else triton, triton-cuda, # Unit tests hypothesis, psutil, # Disable MKLDNN on aarch64-darwin, it negatively impacts performance, # this is also what official pytorch build does mklDnnSupport ? !(stdenv.hostPlatform.isDarwin && stdenv.hostPlatform.isAarch64), # virtual pkg that consistently instantiates blas across nixpkgs # See https://github.com/NixOS/nixpkgs/pull/83888 blas, # ninja (https://ninja-build.org) must be available to run C++ extensions tests, ninja, # dependencies for torch.utils.tensorboard pillow, six, future, tensorboard, protobuf, pythonOlder, # ROCm dependencies rocmSupport ? config.rocmSupport, rocmPackages_5, gpuTargets ? [ ], }: let inherit (lib) attrsets lists strings trivial ; inherit (cudaPackages) cudaFlags cudnn nccl; triton = throw "python3Packages.torch: use _tritonEffective instead of triton to avoid divergence"; rocmPackages = rocmPackages_5; setBool = v: if v then "1" else "0"; # https://github.com/pytorch/pytorch/blob/v2.4.0/torch/utils/cpp_extension.py#L1953 supportedTorchCudaCapabilities = let real = [ "3.5" "3.7" "5.0" "5.2" "5.3" "6.0" "6.1" "6.2" "7.0" "7.2" "7.5" "8.0" "8.6" "8.7" "8.9" "9.0" "9.0a" ]; ptx = lists.map (x: "${x}+PTX") real; in real ++ ptx; # NOTE: The lists.subtractLists function is perhaps a bit unintuitive. It subtracts the elements # of the first list *from* the second list. That means: # lists.subtractLists a b = b - a # For CUDA supportedCudaCapabilities = lists.intersectLists cudaFlags.cudaCapabilities supportedTorchCudaCapabilities; unsupportedCudaCapabilities = lists.subtractLists supportedCudaCapabilities cudaFlags.cudaCapabilities; # Use trivial.warnIf to print a warning if any unsupported GPU targets are specified. gpuArchWarner = supported: unsupported: trivial.throwIf (supported == [ ]) ( "No supported GPU targets specified. Requested GPU targets: " + strings.concatStringsSep ", " unsupported ) supported; # Create the gpuTargetString. gpuTargetString = strings.concatStringsSep ";" ( if gpuTargets != [ ] then # If gpuTargets is specified, it always takes priority. gpuTargets else if cudaSupport then gpuArchWarner supportedCudaCapabilities unsupportedCudaCapabilities else if rocmSupport then rocmPackages.clr.gpuTargets else throw "No GPU targets specified" ); rocmtoolkit_joined = symlinkJoin { name = "rocm-merged"; paths = with rocmPackages; [ rocm-core clr rccl miopen miopengemm rocrand rocblas rocsparse hipsparse rocthrust rocprim hipcub roctracer rocfft rocsolver hipfft hipsolver hipblas rocminfo rocm-thunk rocm-comgr rocm-device-libs rocm-runtime clr.icd hipify ]; # Fix `setuptools` not being found postBuild = '' rm -rf $out/nix-support ''; }; brokenConditions = attrsets.filterAttrs (_: cond: cond) { "CUDA and ROCm are mutually exclusive" = cudaSupport && rocmSupport; "CUDA is not targeting Linux" = cudaSupport && !stdenv.hostPlatform.isLinux; "Unsupported CUDA version" = cudaSupport && !(builtins.elem cudaPackages.cudaMajorVersion [ "11" "12" ]); "MPI cudatoolkit does not match cudaPackages.cudatoolkit" = MPISupport && cudaSupport && (mpi.cudatoolkit != cudaPackages.cudatoolkit); # This used to be a deep package set comparison between cudaPackages and # effectiveMagma.cudaPackages, making torch too strict in cudaPackages. # In particular, this triggered warnings from cuda's `aliases.nix` "Magma cudaPackages does not match cudaPackages" = cudaSupport && (effectiveMagma.cudaPackages.cudaVersion != cudaPackages.cudaVersion); "Rocm support is currently broken because `rocmPackages.hipblaslt` is unpackaged. (2024-06-09)" = rocmSupport; }; in buildPythonPackage rec { pname = "torch"; # Don't forget to update torch-bin to the same version. version = "2.4.1"; pyproject = true; disabled = pythonOlder "3.8.0"; outputs = [ "out" # output standard python package "dev" # output libtorch headers "lib" # output libtorch libraries "cxxdev" # propagated deps for the cmake consumers of torch ]; cudaPropagateToOutput = "cxxdev"; src = fetchFromGitHub { owner = "pytorch"; repo = "pytorch"; rev = "refs/tags/v${version}"; fetchSubmodules = true; hash = "sha256-x/zM/57syr46CP1TfGaefSjzvNm4jJbWFZGVGyzPMg8="; }; patches = [ # Allow setting PYTHON_LIB_REL_PATH with an environment variable. # https://github.com/pytorch/pytorch/pull/128419 ./passthrough-python-lib-rel-path.patch ./0001-cmake.py-propagate-cmakeFlags-from-environment.patch ] ++ lib.optionals cudaSupport [ ./fix-cmake-cuda-toolkit.patch ] ++ lib.optionals (stdenv.hostPlatform.isDarwin && stdenv.hostPlatform.isx86_64) [ # pthreadpool added support for Grand Central Dispatch in April # 2020. However, this relies on functionality (DISPATCH_APPLY_AUTO) # that is available starting with macOS 10.13. However, our current # base is 10.12. Until we upgrade, we can fall back on the older # pthread support. ./pthreadpool-disable-gcd.diff ] ++ lib.optionals stdenv.hostPlatform.isLinux [ # Propagate CUPTI to Kineto by overriding the search path with environment variables. # https://github.com/pytorch/pytorch/pull/108847 ./pytorch-pr-108847.patch ]; postPatch = '' substituteInPlace cmake/public/cuda.cmake \ --replace-fail \ 'message(FATAL_ERROR "Found two conflicting CUDA' \ 'message(WARNING "Found two conflicting CUDA' \ --replace-warn \ "set(CUDAToolkit_ROOT" \ "# Upstream: set(CUDAToolkit_ROOT" substituteInPlace third_party/gloo/cmake/Cuda.cmake \ --replace-warn "find_package(CUDAToolkit 7.0" "find_package(CUDAToolkit" '' + lib.optionalString rocmSupport '' # https://github.com/facebookincubator/gloo/pull/297 substituteInPlace third_party/gloo/cmake/Hipify.cmake \ --replace "\''${HIPIFY_COMMAND}" "python \''${HIPIFY_COMMAND}" # Replace hard-coded rocm paths substituteInPlace caffe2/CMakeLists.txt \ --replace "/opt/rocm" "${rocmtoolkit_joined}" \ --replace "hcc/include" "hip/include" \ --replace "rocblas/include" "include/rocblas" \ --replace "hipsparse/include" "include/hipsparse" # Doesn't pick up the environment variable? substituteInPlace third_party/kineto/libkineto/CMakeLists.txt \ --replace "\''$ENV{ROCM_SOURCE_DIR}" "${rocmtoolkit_joined}" \ --replace "/opt/rocm" "${rocmtoolkit_joined}" # Strangely, this is never set in cmake substituteInPlace cmake/public/LoadHIP.cmake \ --replace "set(ROCM_PATH \$ENV{ROCM_PATH})" \ "set(ROCM_PATH \$ENV{ROCM_PATH})''\nset(ROCM_VERSION ${lib.concatStrings (lib.intersperse "0" (lib.splitVersion rocmPackages.clr.version))})" '' # Detection of NCCL version doesn't work particularly well when using the static binary. + lib.optionalString cudaSupport '' substituteInPlace cmake/Modules/FindNCCL.cmake \ --replace \ 'message(FATAL_ERROR "Found NCCL header version and library version' \ 'message(WARNING "Found NCCL header version and library version' '' # Remove PyTorch's FindCUDAToolkit.cmake and use CMake's default. # NOTE: Parts of pytorch rely on unmaintained FindCUDA.cmake with custom patches to support e.g. # newer architectures (sm_90a). We do want to delete vendored patches, but have to keep them # until https://github.com/pytorch/pytorch/issues/76082 is addressed + lib.optionalString cudaSupport '' rm cmake/Modules/FindCUDAToolkit.cmake '' # error: no member named 'aligned_alloc' in the global namespace; did you mean simply 'aligned_alloc' # This lib overrided aligned_alloc hence the error message. Tltr: his function is linkable but not in header. + lib.optionalString (stdenv.hostPlatform.isDarwin && lib.versionOlder stdenv.hostPlatform.darwinSdkVersion "11.0") '' substituteInPlace third_party/pocketfft/pocketfft_hdronly.h --replace-fail '#if (__cplusplus >= 201703L) && (!defined(__MINGW32__)) && (!defined(_MSC_VER)) inline void *aligned_alloc(size_t align, size_t size)' '#if 0 inline void *aligned_alloc(size_t align, size_t size)' ''; # NOTE(@connorbaker): Though we do not disable Gloo or MPI when building with CUDA support, caution should be taken # when using the different backends. Gloo's GPU support isn't great, and MPI and CUDA can't be used at the same time # without extreme care to ensure they don't lock each other out of shared resources. # For more, see https://github.com/open-mpi/ompi/issues/7733#issuecomment-629806195. preConfigure = lib.optionalString cudaSupport '' export TORCH_CUDA_ARCH_LIST="${gpuTargetString}" export CUPTI_INCLUDE_DIR=${lib.getDev cudaPackages.cuda_cupti}/include export CUPTI_LIBRARY_DIR=${lib.getLib cudaPackages.cuda_cupti}/lib '' + lib.optionalString (cudaSupport && cudaPackages ? cudnn) '' export CUDNN_INCLUDE_DIR=${lib.getLib cudnn}/include export CUDNN_LIB_DIR=${cudnn.lib}/lib '' + lib.optionalString rocmSupport '' export ROCM_PATH=${rocmtoolkit_joined} export ROCM_SOURCE_DIR=${rocmtoolkit_joined} export PYTORCH_ROCM_ARCH="${gpuTargetString}" export CMAKE_CXX_FLAGS="-I${rocmtoolkit_joined}/include -I${rocmtoolkit_joined}/include/rocblas" python tools/amd_build/build_amd.py ''; # Use pytorch's custom configurations dontUseCmakeConfigure = true; # causes possible redefinition of _FORTIFY_SOURCE hardeningDisable = [ "fortify3" ]; BUILD_NAMEDTENSOR = setBool true; BUILD_DOCS = setBool buildDocs; # We only do an imports check, so do not build tests either. BUILD_TEST = setBool false; # Unlike MKL, oneDNN (née MKLDNN) is FOSS, so we enable support for # it by default. PyTorch currently uses its own vendored version # of oneDNN through Intel iDeep. USE_MKLDNN = setBool mklDnnSupport; USE_MKLDNN_CBLAS = setBool mklDnnSupport; # Avoid using pybind11 from git submodule # Also avoids pytorch exporting the headers of pybind11 USE_SYSTEM_PYBIND11 = true; # NB technical debt: building without NNPACK as workaround for missing `six` USE_NNPACK = 0; cmakeFlags = [ # (lib.cmakeBool "CMAKE_FIND_DEBUG_MODE" true) (lib.cmakeFeature "CUDAToolkit_VERSION" cudaPackages.cudaVersion) ] ++ lib.optionals cudaSupport [ # Unbreaks version discovery in enable_language(CUDA) when wrapping nvcc with ccache # Cf. https://gitlab.kitware.com/cmake/cmake/-/issues/26363 (lib.cmakeFeature "CMAKE_CUDA_COMPILER_TOOLKIT_VERSION" cudaPackages.cudaVersion) ]; preBuild = '' export MAX_JOBS=$NIX_BUILD_CORES ${python.pythonOnBuildForHost.interpreter} setup.py build --cmake-only ${cmake}/bin/cmake build ''; preFixup = '' function join_by { local IFS="$1"; shift; echo "$*"; } function strip2 { IFS=':' read -ra RP <<< $(patchelf --print-rpath $1) IFS=' ' RP_NEW=$(join_by : ''${RP[@]:2}) patchelf --set-rpath \$ORIGIN:''${RP_NEW} "$1" } for f in $(find ''${out} -name 'libcaffe2*.so') do strip2 $f done ''; # Override the (weirdly) wrong version set by default. See # https://github.com/NixOS/nixpkgs/pull/52437#issuecomment-449718038 # https://github.com/pytorch/pytorch/blob/v1.0.0/setup.py#L267 PYTORCH_BUILD_VERSION = version; PYTORCH_BUILD_NUMBER = 0; # In-tree builds of NCCL are not supported. # Use NCCL when cudaSupport is enabled and nccl is available. USE_NCCL = setBool useSystemNccl; USE_SYSTEM_NCCL = USE_NCCL; USE_STATIC_NCCL = USE_NCCL; # Set the correct Python library path, broken since # https://github.com/pytorch/pytorch/commit/3d617333e PYTHON_LIB_REL_PATH = "${placeholder "out"}/${python.sitePackages}"; # Suppress a weird warning in mkl-dnn, part of ideep in pytorch # (upstream seems to have fixed this in the wrong place?) # https://github.com/intel/mkl-dnn/commit/8134d346cdb7fe1695a2aa55771071d455fae0bc # https://github.com/pytorch/pytorch/issues/22346 # # Also of interest: pytorch ignores CXXFLAGS uses CFLAGS for both C and C++: # https://github.com/pytorch/pytorch/blob/v1.11.0/setup.py#L17 env.NIX_CFLAGS_COMPILE = toString ( ( lib.optionals (blas.implementation == "mkl") [ "-Wno-error=array-bounds" ] # Suppress gcc regression: avx512 math function raises uninitialized variable warning # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105593 # See also: Fails to compile with GCC 12.1.0 https://github.com/pytorch/pytorch/issues/77939 ++ lib.optionals (stdenv.cc.isGNU && lib.versionAtLeast stdenv.cc.version "12.0.0") [ "-Wno-error=maybe-uninitialized" "-Wno-error=uninitialized" ] # Since pytorch 2.0: # gcc-12.2.0/include/c++/12.2.0/bits/new_allocator.h:158:33: error: ‘void operator delete(void*, std::size_t)’ # ... called on pointer ‘’ with nonzero offset [1, 9223372036854775800] [-Werror=free-nonheap-object] ++ lib.optionals (stdenv.cc.isGNU && lib.versions.major stdenv.cc.version == "12") [ "-Wno-error=free-nonheap-object" ] # .../source/torch/csrc/autograd/generated/python_functions_0.cpp:85:3: # error: cast from ... to ... converts to incompatible function type [-Werror,-Wcast-function-type-strict] ++ lib.optionals (stdenv.cc.isClang && lib.versionAtLeast stdenv.cc.version "16") [ "-Wno-error=cast-function-type-strict" # Suppresses the most spammy warnings. # This is mainly to fix https://github.com/NixOS/nixpkgs/issues/266895. ] ++ lib.optionals rocmSupport [ "-Wno-#warnings" "-Wno-cpp" "-Wno-unknown-warning-option" "-Wno-ignored-attributes" "-Wno-deprecated-declarations" "-Wno-defaulted-function-deleted" "-Wno-pass-failed" ] ++ [ "-Wno-unused-command-line-argument" "-Wno-uninitialized" "-Wno-array-bounds" "-Wno-free-nonheap-object" "-Wno-unused-result" ] ++ lib.optionals stdenv.cc.isGNU [ "-Wno-maybe-uninitialized" "-Wno-stringop-overflow" ] ) ); nativeBuildInputs = [ cmake which ninja pybind11 removeReferencesTo ] ++ lib.optionals cudaSupport ( with cudaPackages; [ autoAddDriverRunpath cuda_nvcc ] ) ++ lib.optionals rocmSupport [ rocmtoolkit_joined ]; buildInputs = [ blas blas.provider ] ++ lib.optionals cudaSupport ( with cudaPackages; [ cuda_cccl # cuda_cudart # cuda_runtime.h and libraries cuda_cupti # For kineto cuda_nvcc # crt/host_config.h; even though we include this in nativeBuildInputs, it's needed here too cuda_nvml_dev # cuda_nvrtc cuda_nvtx # -llibNVToolsExt libcublas libcufft libcurand libcusolver libcusparse ] ++ lists.optionals (cudaPackages ? cudnn) [ cudnn ] ++ lists.optionals useSystemNccl [ # Some platforms do not support NCCL (i.e., Jetson) nccl # Provides nccl.h AND a static copy of NCCL! ] ++ lists.optionals (strings.versionOlder cudaVersion "11.8") [ cuda_nvprof # ] ++ lists.optionals (strings.versionAtLeast cudaVersion "11.8") [ cuda_profiler_api # ] ) ++ lib.optionals rocmSupport [ rocmPackages.llvm.openmp ] ++ lib.optionals (cudaSupport || rocmSupport) [ effectiveMagma ] ++ lib.optionals stdenv.hostPlatform.isLinux [ numactl ] ++ lib.optionals stdenv.hostPlatform.isDarwin [ darwin.apple_sdk.frameworks.Accelerate darwin.apple_sdk.frameworks.CoreServices darwin.libobjc ] ++ lib.optionals tritonSupport [ _tritonEffective ] ++ lib.optionals MPISupport [ mpi ] ++ lib.optionals rocmSupport [ rocmtoolkit_joined ]; dependencies = [ astunparse cffi click numpy pyyaml # From install_requires: fsspec filelock typing-extensions sympy networkx jinja2 # the following are required for tensorboard support pillow six future tensorboard protobuf # torch/csrc requires `pybind11` at runtime pybind11 ] ++ lib.optionals tritonSupport [ _tritonEffective ]; propagatedCxxBuildInputs = [ ] ++ lib.optionals MPISupport [ mpi ] ++ lib.optionals rocmSupport [ rocmtoolkit_joined ]; # Tests take a long time and may be flaky, so just sanity-check imports doCheck = false; pythonImportsCheck = [ "torch" ]; nativeCheckInputs = [ hypothesis ninja psutil ]; checkPhase = with lib.versions; with lib.strings; concatStringsSep " " [ "runHook preCheck" "${python.interpreter} test/run_test.py" "--exclude" (concatStringsSep " " [ "utils" # utils requires git, which is not allowed in the check phase # "dataloader" # psutils correctly finds and triggers multiprocessing, but is too sandboxed to run -- resulting in numerous errors # ^^^^^^^^^^^^ NOTE: while test_dataloader does return errors, these are acceptable errors and do not interfere with the build # tensorboard has acceptable failures for pytorch 1.3.x due to dependencies on tensorboard-plugins (optionalString (majorMinor version == "1.3") "tensorboard") ]) "runHook postCheck" ]; pythonRemoveDeps = [ # In our dist-info the name is just "triton" "pytorch-triton-rocm" ]; postInstall = '' find "$out/${python.sitePackages}/torch/include" "$out/${python.sitePackages}/torch/lib" -type f -exec remove-references-to -t ${stdenv.cc} '{}' + mkdir $dev cp -r $out/${python.sitePackages}/torch/include $dev/include cp -r $out/${python.sitePackages}/torch/share $dev/share # Fix up library paths for split outputs substituteInPlace \ $dev/share/cmake/Torch/TorchConfig.cmake \ --replace \''${TORCH_INSTALL_PREFIX}/lib "$lib/lib" substituteInPlace \ $dev/share/cmake/Caffe2/Caffe2Targets-release.cmake \ --replace \''${_IMPORT_PREFIX}/lib "$lib/lib" mkdir $lib mv $out/${python.sitePackages}/torch/lib $lib/lib ln -s $lib/lib $out/${python.sitePackages}/torch/lib '' + lib.optionalString rocmSupport '' substituteInPlace $dev/share/cmake/Tensorpipe/TensorpipeTargets-release.cmake \ --replace "\''${_IMPORT_PREFIX}/lib64" "$lib/lib" substituteInPlace $dev/share/cmake/ATen/ATenConfig.cmake \ --replace "/build/source/torch/include" "$dev/include" ''; postFixup = '' mkdir -p "$cxxdev/nix-support" printWords "''${propagatedCxxBuildInputs[@]}" >> "$cxxdev/nix-support/propagated-build-inputs" '' + lib.optionalString stdenv.hostPlatform.isDarwin '' for f in $(ls $lib/lib/*.dylib); do install_name_tool -id $lib/lib/$(basename $f) $f || true done install_name_tool -change @rpath/libshm.dylib $lib/lib/libshm.dylib $lib/lib/libtorch_python.dylib install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libtorch_python.dylib install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch_python.dylib install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch.dylib install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libshm.dylib install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libshm.dylib ''; # See https://github.com/NixOS/nixpkgs/issues/296179 # # This is a quick hack to add `libnvrtc` to the runpath so that torch can find # it when it is needed at runtime. extraRunpaths = lib.optionals cudaSupport [ "${lib.getLib cudaPackages.cuda_nvrtc}/lib" ]; postPhases = lib.optionals stdenv.hostPlatform.isLinux [ "postPatchelfPhase" ]; postPatchelfPhase = '' while IFS= read -r -d $'\0' elf ; do for extra in $extraRunpaths ; do echo patchelf "$elf" --add-rpath "$extra" >&2 patchelf "$elf" --add-rpath "$extra" done done < <( find "''${!outputLib}" "$out" -type f -iname '*.so' -print0 ) ''; # Builds in 2+h with 2 cores, and ~15m with a big-parallel builder. requiredSystemFeatures = [ "big-parallel" ]; passthru = { inherit cudaSupport cudaPackages rocmSupport rocmPackages ; cudaCapabilities = if cudaSupport then supportedCudaCapabilities else [ ]; # At least for 1.10.2 `torch.fft` is unavailable unless BLAS provider is MKL. This attribute allows for easy detection of its availability. blasProvider = blas.provider; # To help debug when a package is broken due to CUDA support inherit brokenConditions; tests = callPackage ./tests.nix { }; }; meta = { changelog = "https://github.com/pytorch/pytorch/releases/tag/v${version}"; # keep PyTorch in the description so the package can be found under that name on search.nixos.org description = "PyTorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration"; homepage = "https://pytorch.org/"; license = lib.licenses.bsd3; maintainers = with lib.maintainers; [ teh thoughtpolice tscholak ]; # tscholak esp. for darwin-related builds platforms = lib.platforms.linux ++ lib.optionals (!cudaSupport && !rocmSupport) lib.platforms.darwin; broken = builtins.any trivial.id (builtins.attrValues brokenConditions); }; }