{ stdenv , lib , fetchFromGitHub , fetchpatch , fetchurl , pkg-config , cmake , python3 , libpng , zlib , eigen , protobuf , howard-hinnant-date , nlohmann_json , boost , oneDNN , gtest }: let # prefetch abseil # Note: keep URL in sync with `cmake/external/abseil-cpp.cmake` abseil = fetchurl { url = "https://github.com/abseil/abseil-cpp/archive/refs/tags/20211102.0.zip"; sha256 = "sha256-pFZ/8C+spnG5XjHTFbqxi0K2xvGmDpHG6oTlohQhEsI="; }; in stdenv.mkDerivation rec { pname = "onnxruntime"; version = "1.12.1"; src = fetchFromGitHub { owner = "microsoft"; repo = "onnxruntime"; rev = "v${version}"; sha256 = "sha256-wwllEemiHTp9aJcCd1gsTS4WUVMp5wW+4i/+6DzmAeM="; fetchSubmodules = true; }; patches = [ # Use dnnl from nixpkgs instead of submodules (fetchpatch { name = "system-dnnl.patch"; url = "https://aur.archlinux.org/cgit/aur.git/plain/system-dnnl.diff?h=python-onnxruntime&id=0185531906bda3a9aba93bbb0f3dcfeb0ae671ad"; sha256 = "sha256-58RBrQnAWNtc/1pmFs+PkZ6qCsL1LfMY3P0exMKzotA="; }) ]; nativeBuildInputs = [ cmake pkg-config python3 gtest ]; buildInputs = [ libpng zlib protobuf howard-hinnant-date nlohmann_json boost oneDNN ]; # TODO: build server, and move .so's to lib output outputs = [ "out" "dev" ]; enableParallelBuilding = true; cmakeDir = "../cmake"; cmakeFlags = [ "-Donnxruntime_PREFER_SYSTEM_LIB=ON" "-Donnxruntime_BUILD_SHARED_LIB=ON" "-Donnxruntime_ENABLE_LTO=ON" "-Donnxruntime_BUILD_UNIT_TESTS=ON" "-Donnxruntime_USE_PREINSTALLED_EIGEN=ON" "-Donnxruntime_USE_MPI=ON" "-Deigen_SOURCE_PATH=${eigen.src}" "-Donnxruntime_USE_DNNL=YES" ]; doCheck = true; postPatch = '' substituteInPlace cmake/external/abseil-cpp.cmake \ --replace "${abseil.url}" "${abseil}" ''; postInstall = '' # perform parts of `tools/ci_build/github/linux/copy_strip_binary.sh` install -m644 -Dt $out/include \ ../include/onnxruntime/core/framework/provider_options.h \ ../include/onnxruntime/core/providers/cpu/cpu_provider_factory.h \ ../include/onnxruntime/core/session/onnxruntime_*.h ''; meta = with lib; { description = "Cross-platform, high performance scoring engine for ML models"; longDescription = '' ONNX Runtime is a performance-focused complete scoring engine for Open Neural Network Exchange (ONNX) models, with an open extensible architecture to continually address the latest developments in AI and Deep Learning. ONNX Runtime stays up to date with the ONNX standard with complete implementation of all ONNX operators, and supports all ONNX releases (1.2+) with both future and backwards compatibility. ''; homepage = "https://github.com/microsoft/onnxruntime"; changelog = "https://github.com/microsoft/onnxruntime/releases/tag/v${version}"; # https://github.com/microsoft/onnxruntime/blob/master/BUILD.md#architectures platforms = platforms.unix; license = licenses.mit; maintainers = with maintainers; [ jonringer puffnfresh ck3d ]; }; }