{ lib , stdenv , pythonAtLeast , pythonOlder , fetchFromGitHub , python , buildPythonPackage , setuptools , numpy , llvmlite , libcxx , importlib-metadata , substituteAll , runCommand , config # CUDA-only dependencies: , addOpenGLRunpath ? null , cudaPackages ? {} # CUDA flags: , cudaSupport ? config.cudaSupport }: let inherit (cudaPackages) cudatoolkit; in buildPythonPackage rec { # Using an untagged version, with numpy 1.25 support, when it's released # also drop the versioneer patch in postPatch version = "0.58.1"; pname = "numba"; pyproject = true; disabled = pythonOlder "3.8" || pythonAtLeast "3.12"; src = fetchFromGitHub { owner = "numba"; repo = "numba"; rev = "refs/tags/${version}"; # Upstream uses .gitattributes to inject information about the revision # hash and the refname into `numba/_version.py`, see: # # - https://git-scm.com/docs/gitattributes#_export_subst and # - https://github.com/numba/numba/blame/5ef7c86f76a6e8cc90e9486487294e0c34024797/numba/_version.py#L25-L31 # # Hence this hash may change if GitHub / Git will change it's behavior. # Hopefully this will not happen until the next release. We are fairly sure # that upstream relies on those strings to be valid, that's why we don't # use `forceFetchGit = true;`.` If in the future we'll observe the hash # changes too often, we can always use forceFetchGit, and inject the # relevant strings ourselves, using `sed` commands, in extraPostFetch. hash = "sha256-1Tj2GFoUwRRCWBFxhreF+0Mr+Tjyb7+X4peO+T0qGNs="; }; env.NIX_CFLAGS_COMPILE = lib.optionalString stdenv.isDarwin "-I${lib.getDev libcxx}/include/c++/v1"; nativeBuildInputs = [ numpy ] ++ lib.optionals cudaSupport [ addOpenGLRunpath ]; propagatedBuildInputs = [ numpy llvmlite setuptools ] ++ lib.optionals (pythonOlder "3.9") [ importlib-metadata ] ++ lib.optionals cudaSupport [ cudatoolkit cudatoolkit.lib ]; patches = lib.optionals cudaSupport [ (substituteAll { src = ./cuda_path.patch; cuda_toolkit_path = cudatoolkit; cuda_toolkit_lib_path = cudatoolkit.lib; }) ]; postFixup = lib.optionalString cudaSupport '' find $out -type f \( -name '*.so' -or -name '*.so.*' \) | while read lib; do addOpenGLRunpath "$lib" patchelf --set-rpath "${cudatoolkit}/lib:${cudatoolkit.lib}/lib:$(patchelf --print-rpath "$lib")" "$lib" done ''; # run a smoke test in a temporary directory so that # a) Python picks up the installed library in $out instead of the build files # b) we have somewhere to put $HOME so some caching tests work # c) it doesn't take 6 CPU hours for the full suite checkPhase = '' runHook preCheck pushd $(mktemp -d) HOME=. ${python.interpreter} -m numba.runtests -m $NIX_BUILD_CORES numba.tests.test_usecases popd runHook postCheck ''; pythonImportsCheck = [ "numba" ]; passthru.tests = { # CONTRIBUTOR NOTE: numba also contains CUDA tests, though these cannot be run in # this sandbox environment. Consider running similar commands to those below outside the # sandbox manually if you have the appropriate hardware; support will be detected # and the corresponding tests enabled automatically. # Also, the full suite currently does not complete on anything but x86_64-linux. fullSuite = runCommand "${pname}-test" {} '' pushd $(mktemp -d) # pip and python in $PATH is needed for the test suite to pass fully PATH=${python.withPackages (p: [ p.numba p.pip ])}/bin:$PATH HOME=$PWD python -m numba.runtests -m $NIX_BUILD_CORES popd touch $out # stop Nix from complaining no output was generated and failing the build ''; }; meta = with lib; { description = "Compiling Python code using LLVM"; homepage = "https://numba.pydata.org/"; license = licenses.bsd2; mainProgram = "numba"; maintainers = with maintainers; [ fridh ]; }; }