{ self, lib, testers, fetchzip, fetchurl, writers, symlinkJoin, jq, prom2json, }: let common-config = { config, ... }: { imports = [ ./module.nix ]; services.local-ai = { enable = true; package = self; threads = config.virtualisation.cores; logLevel = "debug"; }; }; inherit (self.lib) genModels; in { version = testers.testVersion { package = self; version = "v" + self.version; command = "local-ai --help"; }; health = testers.runNixOSTest { name = self.name + "-health"; nodes.machine = common-config; testScript = let port = "8080"; in '' machine.wait_for_open_port(${port}) machine.succeed("curl -f http://localhost:${port}/readyz") machine.succeed("${prom2json}/bin/prom2json http://localhost:${port}/metrics > metrics.json") machine.copy_from_vm("metrics.json") ''; }; # https://localai.io/features/embeddings/#bert-embeddings bert = let model = "embedding"; model-configs.${model} = { # Note: q4_0 and q4_1 models can not be loaded parameters.model = fetchurl { url = "https://huggingface.co/skeskinen/ggml/resolve/main/all-MiniLM-L6-v2/ggml-model-f16.bin"; hash = "sha256-nBlbJFOk/vYKT2vjqIo5IRNmIU32SYpP5IhcniIxT1A="; }; backend = "bert-embeddings"; embeddings = true; }; models = genModels model-configs; requests.request = { inherit model; input = "Your text string goes here"; }; in testers.runNixOSTest { name = self.name + "-bert"; nodes.machine = { imports = [ common-config ]; virtualisation.cores = 2; virtualisation.memorySize = 2048; services.local-ai.models = models; }; passthru = { inherit models requests; }; testScript = let port = "8080"; in '' machine.wait_for_open_port(${port}) machine.succeed("curl -f http://localhost:${port}/readyz") machine.succeed("curl -f http://localhost:${port}/v1/models --output models.json") machine.succeed("${jq}/bin/jq --exit-status 'debug | .data[].id == \"${model}\"' models.json") machine.succeed("curl -f http://localhost:${port}/embeddings --json @${writers.writeJSON "request.json" requests.request} --output embeddings.json") machine.copy_from_vm("embeddings.json") machine.succeed("${jq}/bin/jq --exit-status 'debug | .model == \"${model}\"' embeddings.json") machine.succeed("${prom2json}/bin/prom2json http://localhost:${port}/metrics > metrics.json") machine.copy_from_vm("metrics.json") ''; }; } // lib.optionalAttrs (!self.features.with_cublas && !self.features.with_clblas) { # https://localai.io/docs/getting-started/manual/ llama = let model = "gpt-3.5-turbo"; # https://localai.io/advanced/#full-config-model-file-reference model-configs.${model} = rec { context_size = 16 * 1024; # 128kb is possible, but needs 16GB RAM backend = "llama-cpp"; parameters = { # https://ai.meta.com/blog/meta-llama-3-1/ model = fetchurl { url = "https://huggingface.co/lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf"; hash = "sha256-8r4+GiOcEsnz8BqWKxH7KAf4Ay/bY7ClUC6kLd71XkQ="; }; # defaults from: # https://deepinfra.com/meta-llama/Meta-Llama-3.1-8B-Instruct temperature = 0.7; top_p = 0.9; top_k = 0; # following parameter leads to outputs like: !!!!!!!!!!!!!!!!!!! #repeat_penalty = 1; presence_penalty = 0; frequency_penalty = 0; max_tokens = 100; }; stopwords = [ "<|eot_id|>" ]; template = { # Templates implement following specifications # https://github.com/meta-llama/llama3/tree/main?tab=readme-ov-file#instruction-tuned-models # ... and are insprired by: # https://github.com/mudler/LocalAI/blob/master/embedded/models/llama3-instruct.yaml # # The rules for template evaluateion are defined here: # https://pkg.go.dev/text/template chat_message = '' <|start_header_id|>{{.RoleName}}<|end_header_id|> {{.Content}}${builtins.head stopwords}''; chat = "{{.Input}}<|start_header_id|>assistant<|end_header_id|>"; completion = "{{.Input}}"; }; }; models = genModels model-configs; requests = { # https://localai.io/features/text-generation/#chat-completions chat-completions = { inherit model; messages = [ { role = "user"; content = "1 + 2 = ?"; } ]; }; # https://localai.io/features/text-generation/#edit-completions edit-completions = { inherit model; instruction = "rephrase"; input = "Black cat jumped out of the window"; max_tokens = 50; }; # https://localai.io/features/text-generation/#completions completions = { inherit model; prompt = "A long time ago in a galaxy far, far away"; }; }; in testers.runNixOSTest { name = self.name + "-llama"; nodes.machine = { imports = [ common-config ]; virtualisation.cores = 4; virtualisation.memorySize = 8192; services.local-ai.models = models; # TODO: Add test case parallel requests services.local-ai.parallelRequests = 2; }; passthru = { inherit models requests; }; testScript = let port = "8080"; in '' machine.wait_for_open_port(${port}) machine.succeed("curl -f http://localhost:${port}/readyz") machine.succeed("curl -f http://localhost:${port}/v1/models --output models.json") machine.succeed("${jq}/bin/jq --exit-status 'debug | .data[].id == \"${model}\"' models.json") machine.succeed("curl -f http://localhost:${port}/v1/chat/completions --json @${writers.writeJSON "request-chat-completions.json" requests.chat-completions} --output chat-completions.json") machine.copy_from_vm("chat-completions.json") machine.succeed("${jq}/bin/jq --exit-status 'debug | .object == \"chat.completion\"' chat-completions.json") machine.succeed("${jq}/bin/jq --exit-status 'debug | .choices | first.message.content | split(\" \") | last | tonumber == 3' chat-completions.json") machine.succeed("curl -f http://localhost:${port}/v1/edits --json @${writers.writeJSON "request-edit-completions.json" requests.edit-completions} --output edit-completions.json") machine.copy_from_vm("edit-completions.json") machine.succeed("${jq}/bin/jq --exit-status 'debug | .object == \"edit\"' edit-completions.json") machine.succeed("${jq}/bin/jq --exit-status '.usage.completion_tokens | debug == ${toString requests.edit-completions.max_tokens}' edit-completions.json") machine.succeed("curl -f http://localhost:${port}/v1/completions --json @${writers.writeJSON "request-completions.json" requests.completions} --output completions.json") machine.copy_from_vm("completions.json") machine.succeed("${jq}/bin/jq --exit-status 'debug | .object ==\"text_completion\"' completions.json") machine.succeed("${jq}/bin/jq --exit-status '.usage.completion_tokens | debug == ${ toString model-configs.${model}.parameters.max_tokens }' completions.json") machine.succeed("${prom2json}/bin/prom2json http://localhost:${port}/metrics > metrics.json") machine.copy_from_vm("metrics.json") ''; }; } // lib.optionalAttrs (self.features.with_tts && !self.features.with_cublas && !self.features.with_clblas) { # https://localai.io/features/text-to-audio/#piper tts = let model-stt = "whisper-en"; model-configs.${model-stt} = { backend = "whisper"; parameters.model = fetchurl { url = "https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-tiny.en-q5_1.bin"; hash = "sha256-x3xXZvHO8JtrfUfyG1Rsvd1BV4hrO11tT3CekeZsfCs="; }; }; model-tts = "piper-en"; model-configs.${model-tts} = { backend = "piper"; parameters.model = "en-us-danny-low.onnx"; }; models = let models = genModels model-configs; in symlinkJoin { inherit (models) name; paths = [ models (fetchzip { url = "https://github.com/rhasspy/piper/releases/download/v0.0.2/voice-en-us-danny-low.tar.gz"; hash = "sha256-5wf+6H5HeQY0qgdqnAG1vSqtjIFM9lXH53OgouuPm0M="; stripRoot = false; }) ]; }; requests.request = { model = model-tts; input = "Hello, how are you?"; }; in testers.runNixOSTest { name = self.name + "-tts"; nodes.machine = { imports = [ common-config ]; virtualisation.cores = 2; services.local-ai.models = models; }; passthru = { inherit models requests; }; testScript = let port = "8080"; in '' machine.wait_for_open_port(${port}) machine.succeed("curl -f http://localhost:${port}/readyz") machine.succeed("curl -f http://localhost:${port}/v1/models --output models.json") machine.succeed("${jq}/bin/jq --exit-status 'debug' models.json") machine.succeed("curl -f http://localhost:${port}/tts --json @${writers.writeJSON "request.json" requests.request} --output out.wav") machine.copy_from_vm("out.wav") machine.succeed("curl -f http://localhost:${port}/v1/audio/transcriptions --header 'Content-Type: multipart/form-data' --form file=@out.wav --form model=${model-stt} --output transcription.json") machine.copy_from_vm("transcription.json") machine.succeed("${jq}/bin/jq --exit-status 'debug | .segments | first.text == \"${requests.request.input}\"' transcription.json") machine.succeed("${prom2json}/bin/prom2json http://localhost:${port}/metrics > metrics.json") machine.copy_from_vm("metrics.json") ''; }; }