{ lib, stdenv , buildPythonPackage , fetchurl , isPy37 , isPy38 , isPy39 , isPy310 , python , addOpenGLRunpath , future , numpy , patchelf , pyyaml , requests , setuptools , typing-extensions }: let pyVerNoDot = builtins.replaceStrings [ "." ] [ "" ] python.pythonVersion; srcs = import ./binary-hashes.nix version; unsupported = throw "Unsupported system"; version = "1.13.0"; in buildPythonPackage { inherit version; pname = "torch"; # Don't forget to update torch to the same version. format = "wheel"; disabled = !(isPy37 || isPy38 || isPy39 || isPy310); src = fetchurl srcs."${stdenv.system}-${pyVerNoDot}" or unsupported; nativeBuildInputs = [ addOpenGLRunpath patchelf ]; propagatedBuildInputs = [ future numpy pyyaml requests setuptools typing-extensions ]; postInstall = '' # ONNX conversion rm -rf $out/bin ''; postFixup = let rpath = lib.makeLibraryPath [ stdenv.cc.cc.lib ]; in '' find $out/${python.sitePackages}/torch/lib -type f \( -name '*.so' -or -name '*.so.*' \) | while read lib; do echo "setting rpath for $lib..." patchelf --set-rpath "${rpath}:$out/${python.sitePackages}/torch/lib" "$lib" addOpenGLRunpath "$lib" done ''; # The wheel-binary is not stripped to avoid the error of `ImportError: libtorch_cuda_cpp.so: ELF load command address/offset not properly aligned.`. dontStrip = true; pythonImportsCheck = [ "torch" ]; meta = with lib; { description = "PyTorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration"; homepage = "https://pytorch.org/"; changelog = "https://github.com/pytorch/pytorch/releases/tag/v${version}"; # Includes CUDA and Intel MKL, but redistributions of the binary are not limited. # https://docs.nvidia.com/cuda/eula/index.html # https://www.intel.com/content/www/us/en/developer/articles/license/onemkl-license-faq.html license = licenses.bsd3; sourceProvenance = with sourceTypes; [ binaryNativeCode ]; platforms = platforms.linux ++ platforms.darwin; hydraPlatforms = []; # output size 3.2G on 1.11.0 maintainers = with maintainers; [ junjihashimoto ]; }; }