{ lib, stdenv, buildPythonPackage, autoAddDriverRunpath, fetchurl, python, pythonAtLeast, pythonOlder, addDriverRunpath, callPackage, cudaPackages, future, numpy, autoPatchelfHook, pyyaml, requests, setuptools, typing-extensions, sympy, jinja2, networkx, filelock, triton, }: let pyVerNoDot = builtins.replaceStrings [ "." ] [ "" ] python.pythonVersion; srcs = import ./binary-hashes.nix version; unsupported = throw "Unsupported system"; version = "2.3.1"; in buildPythonPackage { inherit version; pname = "torch"; # Don't forget to update torch to the same version. format = "wheel"; disabled = (pythonOlder "3.8") || (pythonAtLeast "3.13"); src = fetchurl srcs."${stdenv.system}-${pyVerNoDot}" or unsupported; nativeBuildInputs = lib.optionals stdenv.isLinux [ addDriverRunpath autoPatchelfHook autoAddDriverRunpath ]; buildInputs = lib.optionals stdenv.isLinux ( with cudaPackages; [ # $out/${sitePackages}/nvfuser/_C*.so wants libnvToolsExt.so.1 but torch/lib only ships # libnvToolsExt-$hash.so.1 cuda_nvtx cuda_cudart cuda_cupti cuda_nvrtc cudnn libcublas libcufft libcurand libcusolver libcusparse nccl ] ); autoPatchelfIgnoreMissingDeps = lib.optionals stdenv.isLinux [ # This is the hardware-dependent userspace driver that comes from # nvidia_x11 package. It must be deployed at runtime in # /run/opengl-driver/lib or pointed at by LD_LIBRARY_PATH variable, rather # than pinned in runpath "libcuda.so.1" ]; dependencies = [ future numpy pyyaml requests setuptools typing-extensions sympy jinja2 networkx filelock ] ++ lib.optionals (stdenv.isLinux && stdenv.isx86_64) [ triton ]; postInstall = '' # ONNX conversion rm -rf $out/bin ''; postFixup = lib.optionalString stdenv.isLinux '' addAutoPatchelfSearchPath "$out/${python.sitePackages}/torch/lib" ''; # See https://github.com/NixOS/nixpkgs/issues/296179 # # This is a quick hack to add `libnvrtc` to the runpath so that torch can find # it when it is needed at runtime. extraRunpaths = lib.optionals stdenv.hostPlatform.isLinux [ "${lib.getLib cudaPackages.cuda_nvrtc}/lib" ]; postPhases = lib.optionals stdenv.isLinux [ "postPatchelfPhase" ]; postPatchelfPhase = '' while IFS= read -r -d $'\0' elf ; do for extra in $extraRunpaths ; do echo patchelf "$elf" --add-rpath "$extra" >&2 patchelf "$elf" --add-rpath "$extra" done done < <( find "''${!outputLib}" "$out" -type f -iname '*.so' -print0 ) ''; # The wheel-binary is not stripped to avoid the error of `ImportError: libtorch_cuda_cpp.so: ELF load command address/offset not properly aligned.`. dontStrip = true; pythonImportsCheck = [ "torch" ]; passthru.tests = callPackage ./tests.nix {}; meta = { description = "PyTorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration"; homepage = "https://pytorch.org/"; changelog = "https://github.com/pytorch/pytorch/releases/tag/v${version}"; # Includes CUDA and Intel MKL, but redistributions of the binary are not limited. # https://docs.nvidia.com/cuda/eula/index.html # https://www.intel.com/content/www/us/en/developer/articles/license/onemkl-license-faq.html # torch's license is BSD3. # torch-bin used to vendor CUDA. It still links against CUDA and MKL. license = with lib.licenses; [ bsd3 issl unfreeRedistributable ]; sourceProvenance = with lib.sourceTypes; [ binaryNativeCode ]; platforms = [ "aarch64-darwin" "aarch64-linux" "x86_64-linux" ]; hydraPlatforms = [ ]; # output size 3.2G on 1.11.0 maintainers = with lib.maintainers; [ junjihashimoto ]; }; }