{ lib, stdenv, fetchurl, perl, perlPackages, makeWrapper, nettools, java, polyml, z3, rlwrap }: # nettools needed for hostname stdenv.mkDerivation rec { pname = "isabelle"; version = "2020"; dirname = "Isabelle${version}"; src = if stdenv.isDarwin then fetchurl { url = "https://isabelle.in.tum.de/website-${dirname}/dist/${dirname}_macos.tar.gz"; sha256 = "1sfr5filsaqj93g5y4p9n8g5652dhr4whj25x4lifdxr2pp560xx"; } else fetchurl { url = "https://isabelle.in.tum.de/website-${dirname}/dist/${dirname}_linux.tar.gz"; sha256 = "1bibabhlsvf6qsjjkgxcpq3cvl1z7r8yfcgqbhbvsiv69n3gyfk3"; }; nativeBuildInputs = [ makeWrapper ]; buildInputs = [ perl polyml z3 ] ++ lib.optionals (!stdenv.isDarwin) [ nettools java ]; sourceRoot = dirname; postPatch = '' patchShebangs . cat >contrib/z3*/etc/settings <<EOF Z3_HOME=${z3} Z3_VERSION=${z3.version} Z3_SOLVER=${z3}/bin/z3 Z3_INSTALLED=yes EOF cat >contrib/polyml-*/etc/settings <<EOF ML_SYSTEM_64=true ML_SYSTEM=${polyml.name} ML_PLATFORM=${stdenv.system} ML_HOME=${polyml}/bin ML_OPTIONS="--minheap 1000" POLYML_HOME="\$COMPONENT" ML_SOURCES="\$POLYML_HOME/src" EOF cat >contrib/jdk*/etc/settings <<EOF ISABELLE_JAVA_PLATFORM=${stdenv.system} ISABELLE_JDK_HOME=${java} EOF echo ISABELLE_LINE_EDITOR=${rlwrap}/bin/rlwrap >>etc/settings for comp in contrib/jdk* contrib/polyml-* contrib/z3-*; do rm -rf $comp/x86* done '' + (if ! stdenv.isLinux then "" else '' arch=${if stdenv.hostPlatform.system == "x86_64-linux" then "x86_64-linux" else "x86-linux"} for f in contrib/*/$arch/{bash_process,epclextract,eprover,nunchaku,SPASS}; do patchelf --set-interpreter $(cat ${stdenv.cc}/nix-support/dynamic-linker) "$f" done ''); installPhase = '' mkdir -p $out/bin mv $TMP/$dirname $out cd $out/$dirname bin/isabelle install $out/bin wrapProgram $out/$dirname/src/HOL/Tools/ATP/scripts/remote_atp --set PERL5LIB ${perlPackages.makeFullPerlPath [ perlPackages.LWP ]} ''; meta = with lib; { description = "A generic proof assistant"; longDescription = '' Isabelle is a generic proof assistant. It allows mathematical formulas to be expressed in a formal language and provides tools for proving those formulas in a logical calculus. ''; homepage = "https://isabelle.in.tum.de/"; license = licenses.bsd3; maintainers = [ maintainers.jwiegley ]; platforms = platforms.linux; }; }