{ lib, stdenv, buildPythonPackage, fetchFromGitHub, # build-system flit-core, # dependencies aiohttp, fsspec, jinja2, numpy, psutil, pyparsing, requests, torch, tqdm, # optional-dependencies matplotlib, networkx, pandas, protobuf, wandb, ipython, matplotlib-inline, pre-commit, torch-geometric, ase, # captum, graphviz, h5py, numba, opt-einsum, pgmpy, pynndescent, # pytorch-memlab, rdflib, rdkit, scikit-image, scikit-learn, scipy, statsmodels, sympy, tabulate, torchmetrics, trimesh, pytorch-lightning, yacs, huggingface-hub, onnx, onnxruntime, pytest, pytest-cov, # tests pytestCheckHook, }: buildPythonPackage rec { pname = "torch-geometric"; version = "2.6.1"; pyproject = true; src = fetchFromGitHub { owner = "pyg-team"; repo = "pytorch_geometric"; rev = "refs/tags/${version}"; hash = "sha256-Zw9YqPQw2N0ZKn5i5Kl4Cjk9JDTmvZmyO/VvIVr6fTU="; }; build-system = [ flit-core ]; dependencies = [ aiohttp fsspec jinja2 numpy psutil pyparsing requests torch tqdm ]; optional-dependencies = { benchmark = [ matplotlib networkx pandas protobuf wandb ]; dev = [ ipython matplotlib-inline pre-commit torch-geometric ]; full = [ ase # captum graphviz h5py matplotlib networkx numba opt-einsum pandas pgmpy pynndescent # pytorch-memlab rdflib rdkit scikit-image scikit-learn scipy statsmodels sympy tabulate torch-geometric torchmetrics trimesh ]; graphgym = [ protobuf pytorch-lightning yacs ]; modelhub = [ huggingface-hub ]; test = [ onnx onnxruntime pytest pytest-cov ]; }; pythonImportsCheck = [ "torch_geometric" ]; nativeCheckInputs = [ pytestCheckHook ]; preCheck = '' export HOME=$(mktemp -d) ''; disabledTests = [ # TODO: try to re-enable when triton will have been updated to 3.0 # torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: # LoweringException: ImportError: cannot import name 'triton_key' from 'triton.compiler.compiler' "test_compile_hetero_conv_graph_breaks" "test_compile_multi_aggr_sage_conv" # RuntimeError: addmm: computation on CPU is not implemented for SparseCsr + SparseCsr @ SparseCsr without MKL. # PyTorch built with MKL has better support for addmm with sparse CPU tensors. "test_asap" "test_graph_unet" # AttributeError: type object 'Any' has no attribute '_name' "test_type_repr" ] ++ lib.optionals stdenv.hostPlatform.isDarwin [ # This test uses `torch.jit` which might not be working on darwin: # RuntimeError: required keyword attribute 'value' has the wrong type "test_traceable_my_conv_with_self_loops" ]; meta = { description = "Graph Neural Network Library for PyTorch"; homepage = "https://github.com/pyg-team/pytorch_geometric"; changelog = "https://github.com/pyg-team/pytorch_geometric/blob/${src.rev}/CHANGELOG.md"; license = lib.licenses.mit; maintainers = with lib.maintainers; [ GaetanLepage ]; }; }