{ lib , stdenv , addOpenGLRunpath , autoPatchelfHook , buildPythonPackage , cudaPackages , fetchurl , pythonAtLeast , pythonOlder , pillow , python , torch-bin }: let pyVerNoDot = builtins.replaceStrings [ "." ] [ "" ] python.pythonVersion; srcs = import ./binary-hashes.nix version; unsupported = throw "Unsupported system"; version = "0.15.2"; in buildPythonPackage { inherit version; pname = "torchvision"; format = "wheel"; src = fetchurl srcs."${stdenv.system}-${pyVerNoDot}" or unsupported; disabled = (pythonOlder "3.8") || (pythonAtLeast "3.12"); buildInputs = with cudaPackages; [ # $out/${sitePackages}/torchvision/_C.so wants libcudart.so.11.0 but torchvision.libs only ships # libcudart.$hash.so.11.0 cuda_cudart ]; nativeBuildInputs = [ autoPatchelfHook addOpenGLRunpath ]; propagatedBuildInputs = [ pillow torch-bin ]; # The wheel-binary is not stripped to avoid the error of `ImportError: libtorch_cuda_cpp.so: ELF load command address/offset not properly aligned.`. dontStrip = true; pythonImportsCheck = [ "torchvision" ]; preInstall = '' addAutoPatchelfSearchPath "${torch-bin}/${python.sitePackages}/torch" ''; meta = with lib; { description = "PyTorch vision library"; homepage = "https://pytorch.org/"; changelog = "https://github.com/pytorch/vision/releases/tag/v${version}"; # Includes CUDA and Intel MKL, but redistributions of the binary are not limited. # https://docs.nvidia.com/cuda/eula/index.html # https://www.intel.com/content/www/us/en/developer/articles/license/onemkl-license-faq.html license = licenses.bsd3; sourceProvenance = with sourceTypes; [ binaryNativeCode ]; platforms = [ "x86_64-linux" ]; maintainers = with maintainers; [ junjihashimoto ]; }; }