{ lib , buildPythonPackage , fetchFromGitHub , pythonOlder # build inputs , networkx , numpy , scipy , scikit-learn , pandas , pyparsing , torch , statsmodels , tqdm , joblib , opt-einsum # check inputs , pytestCheckHook , pytest-cov , coverage , mock , black }: let pname = "pgmpy"; version = "0.1.23"; # optional-dependencies = { # all = [ daft ]; # }; in buildPythonPackage { inherit pname version; format = "setuptools"; disabled = pythonOlder "3.7"; src = fetchFromGitHub { owner = "pgmpy"; repo = pname; rev = "v${version}"; hash = "sha256-4NY37Awhu2mnfZQ/biN1wa9rkGHhTxfZm0+V7D83NR0="; }; propagatedBuildInputs = [ networkx numpy scipy scikit-learn pandas pyparsing torch statsmodels tqdm joblib opt-einsum ]; disabledTests = [ "test_to_daft" # requires optional dependency daft ]; nativeCheckInputs = [ pytestCheckHook # xdoctest pytest-cov coverage mock black ]; meta = with lib; { description = "Python Library for learning (Structure and Parameter), inference (Probabilistic and Causal), and simulations in Bayesian Networks"; homepage = "https://github.com/pgmpy/pgmpy"; changelog = "https://github.com/pgmpy/pgmpy/releases/tag/v${version}"; license = licenses.mit; maintainers = with maintainers; [ happysalada ]; }; }