{ lib, stdenv , buildPythonPackage , fetchurl , python , pythonAtLeast , pythonOlder , addOpenGLRunpath , cudaPackages , future , numpy , autoPatchelfHook , patchelf , pyyaml , requests , setuptools , typing-extensions , sympy , jinja2 , networkx , filelock , openai-triton }: let pyVerNoDot = builtins.replaceStrings [ "." ] [ "" ] python.pythonVersion; srcs = import ./binary-hashes.nix version; unsupported = throw "Unsupported system"; version = "2.0.1"; in buildPythonPackage { inherit version; pname = "torch"; # Don't forget to update torch to the same version. format = "wheel"; disabled = (pythonOlder "3.8") || (pythonAtLeast "3.12"); src = fetchurl srcs."${stdenv.system}-${pyVerNoDot}" or unsupported; nativeBuildInputs = [ addOpenGLRunpath autoPatchelfHook cudaPackages.autoAddOpenGLRunpathHook patchelf ]; buildInputs = with cudaPackages; [ # $out/${sitePackages}/nvfuser/_C*.so wants libnvToolsExt.so.1 but torch/lib only ships # libnvToolsExt-$hash.so.1 cuda_nvtx ]; autoPatchelfIgnoreMissingDeps = [ # This is the hardware-dependent userspace driver that comes from # nvidia_x11 package. It must be deployed at runtime in # /run/opengl-driver/lib or pointed at by LD_LIBRARY_PATH variable, rather # than pinned in runpath "libcuda.so.1" ]; propagatedBuildInputs = [ future numpy pyyaml requests setuptools typing-extensions sympy jinja2 networkx filelock ] ++ lib.optionals stdenv.isx86_64 [ openai-triton ]; postInstall = '' # ONNX conversion rm -rf $out/bin ''; postFixup = '' addAutoPatchelfSearchPath "$out/${python.sitePackages}/torch/lib" patchelf $out/${python.sitePackages}/torch/lib/libcudnn.so.8 --add-needed libcudnn_cnn_infer.so.8 pushd $out/${python.sitePackages}/torch/lib || exit 1 for LIBNVRTC in ./libnvrtc* do case "$LIBNVRTC" in ./libnvrtc-builtins*) true;; ./libnvrtc*) patchelf "$LIBNVRTC" --add-needed libnvrtc-builtins* ;; esac done popd || exit 1 ''; # The wheel-binary is not stripped to avoid the error of `ImportError: libtorch_cuda_cpp.so: ELF load command address/offset not properly aligned.`. dontStrip = true; pythonImportsCheck = [ "torch" ]; meta = with lib; { description = "PyTorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration"; homepage = "https://pytorch.org/"; changelog = "https://github.com/pytorch/pytorch/releases/tag/v${version}"; # Includes CUDA and Intel MKL, but redistributions of the binary are not limited. # https://docs.nvidia.com/cuda/eula/index.html # https://www.intel.com/content/www/us/en/developer/articles/license/onemkl-license-faq.html # torch's license is BSD3. # torch-bin includes CUDA and MKL binaries, therefore unfreeRedistributable is set. license = with licenses; [ bsd3 issl unfreeRedistributable ]; sourceProvenance = with sourceTypes; [ binaryNativeCode ]; platforms = [ "aarch64-darwin" "aarch64-linux" "x86_64-darwin" "x86_64-linux" ]; hydraPlatforms = []; # output size 3.2G on 1.11.0 maintainers = with maintainers; [ junjihashimoto ]; }; }