{ stdenv, lib, fetchFromGitHub, fetchpatch, buildPythonPackage, python, cudaSupport ? false, cudaPackages, magma, mklDnnSupport ? true, useSystemNccl ? true, MPISupport ? false, mpi, buildDocs ? false, cudaArchList ? null, # Native build inputs cmake, util-linux, linkFarm, symlinkJoin, which, pybind11, removeReferencesTo, # Build inputs numactl, # Propagated build inputs numpy, pyyaml, cffi, click, typing-extensions, # Unit tests hypothesis, psutil, # virtual pkg that consistently instantiates blas across nixpkgs # See https://github.com/NixOS/nixpkgs/pull/83888 blas, # ninja (https://ninja-build.org) must be available to run C++ extensions tests, ninja, # dependencies for torch.utils.tensorboard pillow, six, future, tensorboard, protobuf, isPy3k, pythonOlder }: let inherit (cudaPackages) cudatoolkit cudnn nccl; in # assert that everything needed for cuda is present and that the correct cuda versions are used assert !cudaSupport || (let majorIs = lib.versions.major cudatoolkit.version; in majorIs == "9" || majorIs == "10" || majorIs == "11"); # confirm that cudatoolkits are sync'd across dependencies assert !(MPISupport && cudaSupport) || mpi.cudatoolkit == cudatoolkit; assert !cudaSupport || magma.cudatoolkit == cudatoolkit; let setBool = v: if v then "1" else "0"; cudatoolkit_joined = symlinkJoin { name = "${cudatoolkit.name}-unsplit"; # nccl is here purely for semantic grouping it could be moved to nativeBuildInputs paths = [ cudatoolkit.out cudatoolkit.lib nccl.dev nccl.out ]; }; # Give an explicit list of supported architectures for the build, See: # - pytorch bug report: https://github.com/pytorch/pytorch/issues/23573 # - pytorch-1.2.0 build on nixpks: https://github.com/NixOS/nixpkgs/pull/65041 # # This list was selected by omitting the TORCH_CUDA_ARCH_LIST parameter, # observing the fallback option (which selected all architectures known # from cudatoolkit_10_0, pytorch-1.2, and python-3.6), and doing a binary # searching to find offending architectures. # # NOTE: Because of sandboxing, this derivation can't auto-detect the hardware's # cuda architecture, so there is also now a problem around new architectures # not being supported until explicitly added to this derivation. # # FIXME: CMake is throwing the following warning on python-1.2: # # ``` # CMake Warning at cmake/public/utils.cmake:172 (message): # In the future we will require one to explicitly pass TORCH_CUDA_ARCH_LIST # to cmake instead of implicitly setting it as an env variable. This will # become a FATAL_ERROR in future version of pytorch. # ``` # If this is causing problems for your build, this derivation may have to strip # away the standard `buildPythonPackage` and use the # [*Adjust Build Options*](https://github.com/pytorch/pytorch/tree/v1.2.0#adjust-build-options-optional) # instructions. This will also add more flexibility around configurations # (allowing FBGEMM to be built in pytorch-1.1), and may future proof this # derivation. brokenArchs = [ "3.0" ]; # this variable is only used as documentation. cudaCapabilities = rec { cuda9 = [ "3.5" "5.0" "5.2" "6.0" "6.1" "7.0" "7.0+PTX" # I am getting a "undefined architecture compute_75" on cuda 9 # which leads me to believe this is the final cuda-9-compatible architecture. ]; cuda10 = cuda9 ++ [ "7.5" "7.5+PTX" # < most recent architecture as of cudatoolkit_10_0 and pytorch-1.2.0 ]; cuda11 = cuda10 ++ [ "8.0" "8.0+PTX" # < CUDA toolkit 11.0 "8.6" "8.6+PTX" # < CUDA toolkit 11.1 ]; }; final_cudaArchList = if !cudaSupport || cudaArchList != null then cudaArchList else cudaCapabilities."cuda${lib.versions.major cudatoolkit.version}"; # Normally libcuda.so.1 is provided at runtime by nvidia-x11 via # LD_LIBRARY_PATH=/run/opengl-driver/lib. We only use the stub # libcuda.so from cudatoolkit for running tests, so that we don’t have # to recompile pytorch on every update to nvidia-x11 or the kernel. cudaStub = linkFarm "cuda-stub" [{ name = "libcuda.so.1"; path = "${cudatoolkit}/lib/stubs/libcuda.so"; }]; cudaStubEnv = lib.optionalString cudaSupport "LD_LIBRARY_PATH=${cudaStub}\${LD_LIBRARY_PATH:+:}$LD_LIBRARY_PATH "; in buildPythonPackage rec { pname = "pytorch"; # Don't forget to update pytorch-bin to the same version. version = "1.11.0"; format = "setuptools"; disabled = pythonOlder "3.7.0"; outputs = [ "out" # output standard python package "dev" # output libtorch headers "lib" # output libtorch libraries ]; src = fetchFromGitHub { owner = "pytorch"; repo = "pytorch"; rev = "v${version}"; fetchSubmodules = true; sha256 = "sha256-CEu63tdRBAF8CTchO3Qu8gUNObQylX6U08yDTI4/c/0="; }; patches = [ # Fix for a breakpad incompatibility with glibc>2.33 # https://github.com/pytorch/pytorch/issues/70297 # https://github.com/google/breakpad/commit/605c51ed96ad44b34c457bbca320e74e194c317e ./breakpad-sigstksz.patch ] ++ lib.optionals stdenv.isDarwin [ # pthreadpool added support for Grand Central Dispatch in April # 2020. However, this relies on functionality (DISPATCH_APPLY_AUTO) # that is available starting with macOS 10.13. However, our current # base is 10.12. Until we upgrade, we can fall back on the older # pthread support. ./pthreadpool-disable-gcd.diff ]; preConfigure = lib.optionalString cudaSupport '' export TORCH_CUDA_ARCH_LIST="${lib.strings.concatStringsSep ";" final_cudaArchList}" export CC=${cudatoolkit.cc}/bin/gcc CXX=${cudatoolkit.cc}/bin/g++ '' + lib.optionalString (cudaSupport && cudnn != null) '' export CUDNN_INCLUDE_DIR=${cudnn}/include ''; # Use pytorch's custom configurations dontUseCmakeConfigure = true; BUILD_NAMEDTENSOR = setBool true; BUILD_DOCS = setBool buildDocs; # We only do an imports check, so do not build tests either. BUILD_TEST = setBool false; # Unlike MKL, oneDNN (née MKLDNN) is FOSS, so we enable support for # it by default. PyTorch currently uses its own vendored version # of oneDNN through Intel iDeep. USE_MKLDNN = setBool mklDnnSupport; USE_MKLDNN_CBLAS = setBool mklDnnSupport; preBuild = '' export MAX_JOBS=$NIX_BUILD_CORES ${python.interpreter} setup.py build --cmake-only ${cmake}/bin/cmake build ''; preFixup = '' function join_by { local IFS="$1"; shift; echo "$*"; } function strip2 { IFS=':' read -ra RP <<< $(patchelf --print-rpath $1) IFS=' ' RP_NEW=$(join_by : ''${RP[@]:2}) patchelf --set-rpath \$ORIGIN:''${RP_NEW} "$1" } for f in $(find ''${out} -name 'libcaffe2*.so') do strip2 $f done ''; # Override the (weirdly) wrong version set by default. See # https://github.com/NixOS/nixpkgs/pull/52437#issuecomment-449718038 # https://github.com/pytorch/pytorch/blob/v1.0.0/setup.py#L267 PYTORCH_BUILD_VERSION = version; PYTORCH_BUILD_NUMBER = 0; USE_SYSTEM_NCCL=setBool useSystemNccl; # don't build pytorch's third_party NCCL # Suppress a weird warning in mkl-dnn, part of ideep in pytorch # (upstream seems to have fixed this in the wrong place?) # https://github.com/intel/mkl-dnn/commit/8134d346cdb7fe1695a2aa55771071d455fae0bc # https://github.com/pytorch/pytorch/issues/22346 # # Also of interest: pytorch ignores CXXFLAGS uses CFLAGS for both C and C++: # https://github.com/pytorch/pytorch/blob/v1.11.0/setup.py#L17 NIX_CFLAGS_COMPILE = lib.optionals (blas.implementation == "mkl") [ "-Wno-error=array-bounds" ]; nativeBuildInputs = [ cmake util-linux which ninja pybind11 removeReferencesTo ] ++ lib.optionals cudaSupport [ cudatoolkit_joined ]; buildInputs = [ blas blas.provider ] ++ lib.optionals cudaSupport [ cudnn magma nccl ] ++ lib.optionals stdenv.isLinux [ numactl ]; propagatedBuildInputs = [ cffi click numpy pyyaml typing-extensions # the following are required for tensorboard support pillow six future tensorboard protobuf ] ++ lib.optionals MPISupport [ mpi ]; checkInputs = [ hypothesis ninja psutil ]; # Tests take a long time and may be flaky, so just sanity-check imports doCheck = false; pythonImportsCheck = [ "torch" ]; checkPhase = with lib.versions; with lib.strings; concatStringsSep " " [ cudaStubEnv "${python.interpreter} test/run_test.py" "--exclude" (concatStringsSep " " [ "utils" # utils requires git, which is not allowed in the check phase # "dataloader" # psutils correctly finds and triggers multiprocessing, but is too sandboxed to run -- resulting in numerous errors # ^^^^^^^^^^^^ NOTE: while test_dataloader does return errors, these are acceptable errors and do not interfere with the build # tensorboard has acceptable failures for pytorch 1.3.x due to dependencies on tensorboard-plugins (optionalString (majorMinor version == "1.3" ) "tensorboard") ]) ]; postInstall = '' find "$out/${python.sitePackages}/torch/include" "$out/${python.sitePackages}/torch/lib" -type f -exec remove-references-to -t ${stdenv.cc} '{}' + mkdir $dev cp -r $out/${python.sitePackages}/torch/include $dev/include cp -r $out/${python.sitePackages}/torch/share $dev/share # Fix up library paths for split outputs substituteInPlace \ $dev/share/cmake/Torch/TorchConfig.cmake \ --replace \''${TORCH_INSTALL_PREFIX}/lib "$lib/lib" substituteInPlace \ $dev/share/cmake/Caffe2/Caffe2Targets-release.cmake \ --replace \''${_IMPORT_PREFIX}/lib "$lib/lib" mkdir $lib mv $out/${python.sitePackages}/torch/lib $lib/lib ln -s $lib/lib $out/${python.sitePackages}/torch/lib ''; postFixup = lib.optionalString stdenv.isDarwin '' for f in $(ls $lib/lib/*.dylib); do install_name_tool -id $lib/lib/$(basename $f) $f || true done install_name_tool -change @rpath/libshm.dylib $lib/lib/libshm.dylib $lib/lib/libtorch_python.dylib install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libtorch_python.dylib install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch_python.dylib install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch.dylib install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libcaffe2_observers.dylib install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libcaffe2_observers.dylib install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libcaffe2_module_test_dynamic.dylib install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libcaffe2_module_test_dynamic.dylib install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libcaffe2_detectron_ops.dylib install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libcaffe2_detectron_ops.dylib install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libshm.dylib install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libshm.dylib ''; # Builds in 2+h with 2 cores, and ~15m with a big-parallel builder. requiredSystemFeatures = [ "big-parallel" ]; passthru = { inherit cudaSupport cudaPackages; cudaArchList = final_cudaArchList; # At least for 1.10.2 `torch.fft` is unavailable unless BLAS provider is MKL. This attribute allows for easy detection of its availability. blasProvider = blas.provider; }; meta = with lib; { # darwin: error: use of undeclared identifier 'noU'; did you mean 'no'? broken = (stdenv.isLinux && stdenv.isAarch64) || stdenv.isDarwin; description = "Open source, prototype-to-production deep learning platform"; homepage = "https://pytorch.org/"; license = licenses.bsd3; platforms = with platforms; linux ++ lib.optionals (!cudaSupport) darwin; maintainers = with maintainers; [ teh thoughtpolice tscholak ]; # tscholak esp. for darwin-related builds }; }