{ lib , stdenv , buildPythonPackage , fetchurl , isPy37 , isPy38 , isPy39 , isPy310 , patchelf , pillow , python , pytorch-bin }: let pyVerNoDot = builtins.replaceStrings [ "." ] [ "" ] python.pythonVersion; srcs = import ./binary-hashes.nix version; unsupported = throw "Unsupported system"; version = "0.12.0"; in buildPythonPackage { inherit version; pname = "torchvision"; format = "wheel"; src = fetchurl srcs."${stdenv.system}-${pyVerNoDot}" or unsupported; disabled = !(isPy37 || isPy38 || isPy39 || isPy310); nativeBuildInputs = [ patchelf ]; propagatedBuildInputs = [ pillow pytorch-bin ]; # The wheel-binary is not stripped to avoid the error of `ImportError: libtorch_cuda_cpp.so: ELF load command address/offset not properly aligned.`. dontStrip = true; pythonImportsCheck = [ "torchvision" ]; postFixup = let rpath = lib.makeLibraryPath [ stdenv.cc.cc.lib ]; in '' # Note: after patchelf'ing, libcudart can still not be found. However, this should # not be an issue, because PyTorch is loaded before torchvision and brings # in the necessary symbols. patchelf --set-rpath "${rpath}:${pytorch-bin}/${python.sitePackages}/torch/lib:" \ "$out/${python.sitePackages}/torchvision/_C.so" ''; meta = with lib; { description = "PyTorch vision library"; homepage = "https://pytorch.org/"; changelog = "https://github.com/pytorch/vision/releases/tag/v${version}"; # Includes CUDA and Intel MKL, but redistributions of the binary are not limited. # https://docs.nvidia.com/cuda/eula/index.html # https://www.intel.com/content/www/us/en/developer/articles/license/onemkl-license-faq.html license = licenses.bsd3; sourceProvenance = with sourceTypes; [ binaryNativeCode ]; platforms = platforms.linux; maintainers = with maintainers; [ junjihashimoto ]; }; }