depot/third_party/nixpkgs/pkgs/development/python-modules/gpytorch/default.nix
Default email 5e7c2d6cef Project import generated by Copybara.
GitOrigin-RevId: f99e5f03cc0aa231ab5950a15ed02afec45ed51a
2023-10-09 21:29:22 +02:00

61 lines
1.2 KiB
Nix

{ lib
, buildPythonPackage
, fetchFromGitHub
, linear_operator
, scikit-learn
, setuptools
, setuptools-scm
, wheel
, torch
, pytestCheckHook
}:
buildPythonPackage rec {
pname = "gpytorch";
version = "1.11";
format = "pyproject";
src = fetchFromGitHub {
owner = "cornellius-gp";
repo = pname;
rev = "v${version}";
hash = "sha256-cpkfjx5G/4duL1Rr4nkHTHi03TDcYbcx3bKP2Ny7Ijo=";
};
env.SETUPTOOLS_SCM_PRETEND_VERSION = version;
nativeBuildInputs = [
setuptools
setuptools-scm
wheel
];
propagatedBuildInputs = [
linear_operator
scikit-learn
torch
];
checkInputs = [
pytestCheckHook
];
pythonImportsCheck = [ "gpytorch" ];
disabledTests = [
# AssertionError on number of warnings emitted
"test_deprecated_methods"
# flaky numerical tests
"test_classification_error"
"test_matmul_matrix_broadcast"
# https://github.com/cornellius-gp/gpytorch/issues/2396
"test_t_matmul_matrix"
];
meta = with lib; {
description = "A highly efficient and modular implementation of Gaussian Processes, with GPU acceleration";
homepage = "https://gpytorch.ai";
license = licenses.mit;
maintainers = with maintainers; [ veprbl ];
};
}