depot/third_party/nixpkgs/pkgs/stdenv/linux/default.nix
Default email a0cb138ada Project import generated by Copybara.
GitOrigin-RevId: a100acd7bbf105915b0004427802286c37738fef
2023-02-02 18:25:31 +00:00

557 lines
22 KiB
Nix
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# This file constructs the standard build environment for the
# Linux platform. It's completely pure; that is, it relies on no
# external (non-Nix) tools, such as /usr/bin/gcc, and it contains a C
# compiler and linker that do not search in default locations,
# ensuring purity of components produced by it.
#
# It starts from prebuilt seed bootstrapFiles and creates a series of
# nixpkgs instances (stages) to gradually rebuild stdenv, which
# is used to build all other packages (including the bootstrapFiles).
#
# Goals of the bootstrap process:
# 1. final stdenv must not reference any of the bootstrap files.
# 2. final stdenv must not contain any of the bootstrap files
# (the only current violation is libgcc_s.so in glibc).
# 3. final stdenv must not contain any of the files directly
# generated by the bootstrap code generators (assembler, linker,
# compiler). The only current violations are: libgcc_s.so in glibc,
# the lib{mpfr,mpc,gmp,isl} which are statically linked
# into the final gcc).
#
# These goals ensure that final packages and final stdenv are built
# exclusively using nixpkgs package definitions and don't depend
# on bootstrapTools (via direct references, inclusion
# of copied code, or code compiled directly by bootstrapTools).
#
# Stages are described below along with their definitions.
#
# Debugging stdenv dependency graph:
# An useful tool to explore dependencies across stages is to use
# '__bootPackages' attribute of 'stdenv. Examples of last 3 stages:
# - stdenv
# - stdenv.__bootPackages.stdenv
# - stdenv.__bootPackages.stdenv.__bootPackages.stdenv
# - ... and so on.
#
# To explore build-time dependencies in graphical form one can use
# the following:
# $ nix-store --query --graph $(nix-instantiate -A stdenv) |
# grep -P -v '[.]sh|[.]patch|bash|[.]tar' | # avoid clutter
# dot -Tsvg > stdenv-final.svg
#
# To find all the packages built by a particular stdenv instance:
# $ for stage in 0 1 2 3 4; do
# echo "stage${stage} used in:"
# nix-store --query --graph $(nix-instantiate -A stdenv) |
# grep -P ".*bootstrap-stage${stage}-stdenv.*->.*" |
# sed 's/"[0-9a-z]\{32\}-/"/g'
# done
#
# To verify which stdenv was used to build a given final package:
# $ nix-store --query --graph $(nix-instantiate -A stdenv) |
# grep -P -v '[.]sh|[.]patch|bash|[.]tar' |
# grep -P '.*stdenv.*->.*glibc-2'
# "...-bootstrap-stage2-stdenv-linux.drv" -> "...-glibc-2.35-224.drv";
#
# For a TUI (rather than CLI) view, you can use:
#
# $ nix-tree --derivation $(nix-instantiate -A stdenv)
{ lib
, localSystem, crossSystem, config, overlays, crossOverlays ? []
, bootstrapFiles ?
let table = {
glibc = {
i686-linux = import ./bootstrap-files/i686.nix;
x86_64-linux = import ./bootstrap-files/x86_64.nix;
armv5tel-linux = import ./bootstrap-files/armv5tel.nix;
armv6l-linux = import ./bootstrap-files/armv6l.nix;
armv7l-linux = import ./bootstrap-files/armv7l.nix;
aarch64-linux = import ./bootstrap-files/aarch64.nix;
mipsel-linux = import ./bootstrap-files/loongson2f.nix;
mips64el-linux = import ./bootstrap-files/mips64el.nix;
powerpc64le-linux = import ./bootstrap-files/powerpc64le.nix;
riscv64-linux = import ./bootstrap-files/riscv64.nix;
};
musl = {
aarch64-linux = import ./bootstrap-files/aarch64-musl.nix;
armv6l-linux = import ./bootstrap-files/armv6l-musl.nix;
x86_64-linux = import ./bootstrap-files/x86_64-musl.nix;
};
};
# Try to find an architecture compatible with our current system. We
# just try every bootstrap weve got and test to see if it is
# compatible with or current architecture.
getCompatibleTools = lib.foldl (v: system:
if v != null then v
else if localSystem.canExecute (lib.systems.elaborate { inherit system; }) then archLookupTable.${system}
else null) null (lib.attrNames archLookupTable);
archLookupTable = table.${localSystem.libc}
or (abort "unsupported libc for the pure Linux stdenv");
files = archLookupTable.${localSystem.system} or (if getCompatibleTools != null then getCompatibleTools
else (abort "unsupported platform for the pure Linux stdenv"));
in files
}:
assert crossSystem == localSystem;
let
inherit (localSystem) system;
commonPreHook =
''
export NIX_ENFORCE_PURITY="''${NIX_ENFORCE_PURITY-1}"
export NIX_ENFORCE_NO_NATIVE="''${NIX_ENFORCE_NO_NATIVE-1}"
${if system == "x86_64-linux" then "NIX_LIB64_IN_SELF_RPATH=1" else ""}
${if system == "mipsel-linux" then "NIX_LIB32_IN_SELF_RPATH=1" else ""}
'';
# The bootstrap process proceeds in several steps.
# Create a standard environment by downloading pre-built binaries of
# coreutils, GCC, etc.
# Download and unpack the bootstrap tools (coreutils, GCC, Glibc, ...).
bootstrapTools = import (if localSystem.libc == "musl" then ./bootstrap-tools-musl else ./bootstrap-tools) {
inherit system bootstrapFiles;
extraAttrs = lib.optionalAttrs
config.contentAddressedByDefault
{
__contentAddressed = true;
outputHashAlgo = "sha256";
outputHashMode = "recursive";
};
};
getLibc = stage: stage.${localSystem.libc};
# This function builds the various standard environments used during
# the bootstrap. In all stages, we build an stdenv and the package
# set that can be built with that stdenv.
stageFun = prevStage:
{ name, overrides ? (self: super: {}), extraNativeBuildInputs ? [] }:
let
thisStdenv = import ../generic {
name = "${name}-stdenv-linux";
buildPlatform = localSystem;
hostPlatform = localSystem;
targetPlatform = localSystem;
inherit config extraNativeBuildInputs;
preHook =
''
# Don't patch #!/interpreter because it leads to retained
# dependencies on the bootstrapTools in the final stdenv.
dontPatchShebangs=1
${commonPreHook}
'';
shell = "${bootstrapTools}/bin/bash";
initialPath = [bootstrapTools];
fetchurlBoot = import ../../build-support/fetchurl/boot.nix {
inherit system;
};
cc = if prevStage.gcc-unwrapped == null
then null
else lib.makeOverridable (import ../../build-support/cc-wrapper) {
name = "${name}-gcc-wrapper";
nativeTools = false;
nativeLibc = false;
buildPackages = lib.optionalAttrs (prevStage ? stdenv) {
inherit (prevStage) stdenv;
};
cc = prevStage.gcc-unwrapped;
bintools = prevStage.binutils;
isGNU = true;
libc = getLibc prevStage;
inherit lib;
inherit (prevStage) coreutils gnugrep;
stdenvNoCC = prevStage.ccWrapperStdenv;
};
overrides = self: super: (overrides self super) // { fetchurl = thisStdenv.fetchurlBoot; };
};
in {
inherit config overlays;
stdenv = thisStdenv;
};
in
[
({}: {
__raw = true;
gcc-unwrapped = null;
binutils = null;
coreutils = null;
gnugrep = null;
})
# Build a dummy stdenv with no GCC or working fetchurl. This is
# because we need a stdenv to build the GCC wrapper and fetchurl.
#
# resulting stage0 stdenv:
# - coreutils, binutils, glibc, gcc: from bootstrapFiles
(prevStage: stageFun prevStage {
name = "bootstrap-stage0";
overrides = self: super: {
# We thread stage0's stdenv through under this name so downstream stages
# can use it for wrapping gcc too. This way, downstream stages don't need
# to refer to this stage directly, which violates the principle that each
# stage should only access the stage that came before it.
ccWrapperStdenv = self.stdenv;
# The Glibc include directory cannot have the same prefix as the
# GCC include directory, since GCC gets confused otherwise (it
# will search the Glibc headers before the GCC headers). So
# create a dummy Glibc here, which will be used in the stdenv of
# stage1.
${localSystem.libc} = self.stdenv.mkDerivation {
pname = "bootstrap-stage0-${localSystem.libc}";
strictDeps = true;
version = "bootstrap";
enableParallelBuilding = true;
buildCommand = ''
mkdir -p $out
ln -s ${bootstrapTools}/lib $out/lib
'' + lib.optionalString (localSystem.libc == "glibc") ''
ln -s ${bootstrapTools}/include-glibc $out/include
'' + lib.optionalString (localSystem.libc == "musl") ''
ln -s ${bootstrapTools}/include-libc $out/include
'';
};
gcc-unwrapped = bootstrapTools;
binutils = import ../../build-support/bintools-wrapper {
name = "bootstrap-stage0-binutils-wrapper";
nativeTools = false;
nativeLibc = false;
buildPackages = { };
libc = getLibc self;
inherit lib;
inherit (self) stdenvNoCC coreutils gnugrep;
bintools = bootstrapTools;
};
coreutils = bootstrapTools;
gnugrep = bootstrapTools;
};
})
# Create the first "real" standard environment. This one consists
# of bootstrap tools only, and a minimal Glibc to keep the GCC
# configure script happy.
#
# For clarity, we only use the previous stage when specifying these
# stages. So stageN should only ever have references for stage{N-1}.
#
# If we ever need to use a package from more than one stage back, we
# simply re-export those packages in the middle stage(s) using the
# overrides attribute and the inherit syntax.
#
# resulting stage1 stdenv:
# - coreutils, binutils, glibc, gcc: from bootstrapFiles
(prevStage: stageFun prevStage {
name = "bootstrap-stage1";
# Rebuild binutils to use from stage2 onwards.
overrides = self: super: {
binutils-unwrapped = super.binutils-unwrapped.override {
enableGold = false;
};
inherit (prevStage)
ccWrapperStdenv
gcc-unwrapped coreutils gnugrep;
${localSystem.libc} = getLibc prevStage;
# A threaded perl build needs glibc/libpthread_nonshared.a,
# which is not included in bootstrapTools, so disable threading.
# This is not an issue for the final stdenv, because this perl
# won't be included in the final stdenv and won't be exported to
# top-level pkgs as an override either.
perl = super.perl.override { enableThreading = false; enableCrypt = false; };
};
})
# 2nd stdenv that contains our own rebuilt binutils and is used for
# compiling our own Glibc.
#
# resulting stage2 stdenv:
# - coreutils, glibc, gcc: from bootstrapFiles
# - binutils: from nixpkgs, built by bootstrapFiles toolchain
(prevStage: stageFun prevStage {
name = "bootstrap-stage2";
overrides = self: super: {
inherit (prevStage)
ccWrapperStdenv gettext
gcc-unwrapped coreutils gnugrep
perl gnum4 bison;
dejagnu = super.dejagnu.overrideAttrs (a: { doCheck = false; } );
# We need libidn2 and its dependency libunistring as glibc dependency.
# To avoid the cycle, we build against bootstrap libc, nuke references,
# and use the result as input for our final glibc. We also pass this pair
# through, so the final package-set uses exactly the same builds.
libunistring = super.libunistring.overrideAttrs (attrs: {
postFixup = attrs.postFixup or "" + ''
${self.nukeReferences}/bin/nuke-refs "$out"/lib/lib*.so.*.*
'';
# Apparently iconv won't work with bootstrap glibc, but it will be used
# with glibc built later where we keep *this* build of libunistring,
# so we need to trick it into supporting libiconv.
env = attrs.env or {} // { am_cv_func_iconv_works = "yes"; };
});
libidn2 = super.libidn2.overrideAttrs (attrs: {
postFixup = attrs.postFixup or "" + ''
${self.nukeReferences}/bin/nuke-refs -e '${lib.getLib self.libunistring}' \
"$out"/lib/lib*.so.*.*
'';
});
# This also contains the full, dynamically linked, final Glibc.
binutils = prevStage.binutils.override {
# Rewrap the binutils with the new glibc, so both the next
# stage's wrappers use it.
libc = getLibc self;
# Unfortunately, when building gcc in the next stage, its LTO plugin
# would use the final libc but `ld` would use the bootstrap one,
# and that can fail to load. Therefore we upgrade `ld` to use newer libc;
# apparently the interpreter needs to match libc, too.
bintools = self.stdenvNoCC.mkDerivation {
pname = prevStage.bintools.bintools.pname + "-patchelfed-ld";
inherit (prevStage.bintools.bintools) version;
enableParallelBuilding = true;
dontUnpack = true;
dontBuild = true;
strictDeps = true;
# We wouldn't need to *copy* all, but it's easier and the result is temporary anyway.
installPhase = ''
mkdir -p "$out"/bin
cp -a '${prevStage.bintools.bintools}'/bin/* "$out"/bin/
chmod +w "$out"/bin/ld.bfd
patchelf --set-interpreter '${getLibc self}'/lib/ld*.so.? \
--set-rpath "${getLibc self}/lib:$(patchelf --print-rpath "$out"/bin/ld.bfd)" \
"$out"/bin/ld.bfd
'';
};
};
};
# `libtool` comes with obsolete config.sub/config.guess that don't recognize Risc-V.
extraNativeBuildInputs =
lib.optional (localSystem.isRiscV) prevStage.updateAutotoolsGnuConfigScriptsHook;
})
# Construct a third stdenv identical to the 2nd, except that this
# one uses the rebuilt Glibc from stage2. It still uses the recent
# binutils and rest of the bootstrap tools, including GCC.
#
# resulting stage3 stdenv:
# - coreutils, gcc: from bootstrapFiles
# - glibc, binutils: from nixpkgs, built by bootstrapFiles toolchain
(prevStage: stageFun prevStage {
name = "bootstrap-stage3";
overrides = self: super: rec {
inherit (prevStage)
ccWrapperStdenv
binutils coreutils gnugrep gettext
perl patchelf linuxHeaders gnum4 bison libidn2 libunistring;
${localSystem.libc} = getLibc prevStage;
gcc-unwrapped =
let makeStaticLibrariesAndMark = pkg:
lib.makeOverridable (pkg.override { stdenv = self.makeStaticLibraries self.stdenv; })
.overrideAttrs (a: { pname = "${a.pname}-stage3"; });
in super.gcc-unwrapped.override {
# Link GCC statically against GMP etc. This makes sense because
# these builds of the libraries are only used by GCC, so it
# reduces the size of the stdenv closure.
gmp = makeStaticLibrariesAndMark super.gmp;
mpfr = makeStaticLibrariesAndMark super.mpfr;
libmpc = makeStaticLibrariesAndMark super.libmpc;
isl = makeStaticLibrariesAndMark super.isl_0_20;
# Use a deterministically built compiler
# see https://github.com/NixOS/nixpkgs/issues/108475 for context
reproducibleBuild = true;
profiledCompiler = false;
};
};
extraNativeBuildInputs = [ prevStage.patchelf ] ++
# Many tarballs come with obsolete config.sub/config.guess that don't recognize aarch64.
lib.optional (!localSystem.isx86 || localSystem.libc == "musl")
prevStage.updateAutotoolsGnuConfigScriptsHook;
})
# Construct a fourth stdenv that uses the new GCC. But coreutils is
# still from the bootstrap tools.
#
# resulting stage4 stdenv:
# - coreutils: from bootstrapFiles
# - glibc, binutils: from nixpkgs, built by bootstrapFiles toolchain
# - gcc: from nixpkgs, built by bootstrapFiles toolchain. Can assume
# it has almost no code from bootstrapTools as gcc bootstraps
# internally. The only exceptions are crt files from glibc
# built by bootstrapTools used to link executables and libraries,
# and the bootstrapTools-built, statically-linked
# lib{mpfr,mpc,gmp,isl}.a which are linked into the final gcc
# (see commit cfde88976ba4cddd01b1bb28b40afd12ea93a11d).
(prevStage: stageFun prevStage {
name = "bootstrap-stage4";
overrides = self: super: {
# Zlib has to be inherited and not rebuilt in this stage,
# because gcc (since JAR support) already depends on zlib, and
# then if we already have a zlib we want to use that for the
# other purposes (binutils and top-level pkgs) too.
inherit (prevStage) gettext gnum4 bison perl texinfo zlib linuxHeaders libidn2 libunistring;
${localSystem.libc} = getLibc prevStage;
binutils = super.binutils.override {
# Don't use stdenv's shell but our own
shell = self.bash + "/bin/bash";
# Build expand-response-params with last stage like below
buildPackages = {
inherit (prevStage) stdenv;
};
};
# force gmp to rebuild so we have the option of dynamically linking
# libgmp without creating a reference path from:
# stage5.gcc -> stage4.coreutils -> stage3.glibc -> bootstrap
gmp = lib.makeOverridable (super.gmp.override { stdenv = self.stdenv; }).overrideAttrs (a: { pname = "${a.pname}-stage4"; });
# To allow users' overrides inhibit dependencies too heavy for
# bootstrap, like guile: https://github.com/NixOS/nixpkgs/issues/181188
gnumake = super.gnumake.override { inBootstrap = true; };
gcc = lib.makeOverridable (import ../../build-support/cc-wrapper) {
nativeTools = false;
nativeLibc = false;
isGNU = true;
buildPackages = {
inherit (prevStage) stdenv;
};
cc = prevStage.gcc-unwrapped;
bintools = self.binutils;
libc = getLibc self;
inherit lib;
inherit (self) stdenvNoCC coreutils gnugrep;
shell = self.bash + "/bin/bash";
};
};
extraNativeBuildInputs = [ prevStage.patchelf prevStage.xz ] ++
# Many tarballs come with obsolete config.sub/config.guess that don't recognize aarch64.
lib.optional (!localSystem.isx86 || localSystem.libc == "musl")
prevStage.updateAutotoolsGnuConfigScriptsHook;
})
# Construct the final stdenv. It uses the Glibc and GCC, and adds
# in a new binutils that doesn't depend on bootstrap-tools, as well
# as dynamically linked versions of all other tools.
#
# When updating stdenvLinux, make sure that the result has no
# dependency (`nix-store -qR') on bootstrapTools or the first
# binutils built.
#
# resulting stage5 (final) stdenv:
# - coreutils, binutils: from nixpkgs, built by nixpkgs toolchain
# - glibc: from nixpkgs, built by bootstrapFiles toolchain
# - gcc: from nixpkgs, built by bootstrapFiles toolchain. Can assume
# it has almost no code from bootstrapTools as gcc bootstraps
# internally. The only exceptions are crt files from glibc
# built by bootstrapTools used to link executables and libraries,
# and the bootstrapTools-built, statically-linked
# lib{mpfr,mpc,gmp,isl}.a which are linked into the final gcc
# (see commit cfde88976ba4cddd01b1bb28b40afd12ea93a11d).
(prevStage: {
inherit config overlays;
stdenv = import ../generic rec {
name = "stdenv-linux";
buildPlatform = localSystem;
hostPlatform = localSystem;
targetPlatform = localSystem;
inherit config;
preHook = commonPreHook;
initialPath =
((import ../generic/common-path.nix) {pkgs = prevStage;});
extraNativeBuildInputs = [ prevStage.patchelf ] ++
# Many tarballs come with obsolete config.sub/config.guess that don't recognize aarch64.
lib.optional (!localSystem.isx86 || localSystem.libc == "musl")
prevStage.updateAutotoolsGnuConfigScriptsHook;
cc = prevStage.gcc;
shell = cc.shell;
inherit (prevStage.stdenv) fetchurlBoot;
extraAttrs = {
inherit bootstrapTools;
shellPackage = prevStage.bash;
};
disallowedRequisites = [ bootstrapTools.out ];
# Mainly avoid reference to bootstrap tools
allowedRequisites = with prevStage; with lib;
# Simple executable tools
concatMap (p: [ (getBin p) (getLib p) ]) [
gzip bzip2 xz bash binutils.bintools coreutils diffutils findutils
gawk gmp gnumake gnused gnutar gnugrep gnupatch patchelf ed file
]
# Library dependencies
++ map getLib (
[ attr acl zlib pcre libidn2 libunistring ]
++ lib.optional (gawk.libsigsegv != null) gawk.libsigsegv
)
# More complicated cases
++ (map (x: getOutput x (getLibc prevStage)) [ "out" "dev" "bin" ] )
++ [ /*propagated from .dev*/ linuxHeaders
binutils gcc gcc.cc gcc.cc.lib gcc.expand-response-params
]
++ lib.optionals (!localSystem.isx86 || localSystem.libc == "musl")
[ prevStage.updateAutotoolsGnuConfigScriptsHook prevStage.gnu-config ];
overrides = self: super: {
inherit (prevStage)
gzip bzip2 xz bash coreutils diffutils findutils gawk
gnused gnutar gnugrep gnupatch patchelf
attr acl zlib pcre libunistring;
${localSystem.libc} = getLibc prevStage;
# Hack: avoid libidn2.{bin,dev} referencing bootstrap tools. There's a logical cycle.
libidn2 = import ../../development/libraries/libidn2/no-bootstrap-reference.nix {
inherit lib;
inherit (prevStage) libidn2;
inherit (self) stdenv runCommandLocal patchelf libunistring;
};
gnumake = super.gnumake.override { inBootstrap = false; };
} // lib.optionalAttrs (super.stdenv.targetPlatform == localSystem) {
# Need to get rid of these when cross-compiling.
inherit (prevStage) binutils binutils-unwrapped;
gcc = cc;
};
};
})
]