depot/third_party/nixpkgs/pkgs/development/python-modules/torch/bin.nix

157 lines
4 KiB
Nix

{
lib,
stdenv,
python,
buildPythonPackage,
pythonOlder,
pythonAtLeast,
fetchurl,
# nativeBuildInputs
addDriverRunpath,
autoAddDriverRunpath,
autoPatchelfHook,
# buildInputs
cudaPackages,
# dependencies
filelock,
future,
jinja2,
networkx,
numpy,
pyyaml,
requests,
setuptools,
sympy,
typing-extensions,
triton,
callPackage,
}:
let
pyVerNoDot = builtins.replaceStrings [ "." ] [ "" ] python.pythonVersion;
srcs = import ./binary-hashes.nix version;
unsupported = throw "Unsupported system";
version = "2.5.1";
in
buildPythonPackage {
inherit version;
pname = "torch";
# Don't forget to update torch to the same version.
format = "wheel";
disabled = (pythonOlder "3.9") || (pythonAtLeast "3.13");
src = fetchurl srcs."${stdenv.system}-${pyVerNoDot}" or unsupported;
nativeBuildInputs = lib.optionals stdenv.hostPlatform.isLinux [
addDriverRunpath
autoAddDriverRunpath
autoPatchelfHook
];
buildInputs = lib.optionals stdenv.hostPlatform.isLinux (
with cudaPackages;
[
# $out/${sitePackages}/nvfuser/_C*.so wants libnvToolsExt.so.1 but torch/lib only ships
# libnvToolsExt-$hash.so.1
cuda_nvtx
cuda_cudart
cuda_cupti
cuda_nvrtc
cudnn
libcublas
libcufft
libcurand
libcusolver
libcusparse
nccl
]
);
autoPatchelfIgnoreMissingDeps = lib.optionals stdenv.hostPlatform.isLinux [
# This is the hardware-dependent userspace driver that comes from
# nvidia_x11 package. It must be deployed at runtime in
# /run/opengl-driver/lib or pointed at by LD_LIBRARY_PATH variable, rather
# than pinned in runpath
"libcuda.so.1"
];
dependencies = [
filelock
future
jinja2
networkx
numpy
pyyaml
requests
setuptools
sympy
typing-extensions
] ++ lib.optionals (stdenv.hostPlatform.isLinux && stdenv.hostPlatform.isx86_64) [ triton ];
postInstall = ''
# ONNX conversion
rm -rf $out/bin
'';
postFixup = lib.optionalString stdenv.hostPlatform.isLinux ''
addAutoPatchelfSearchPath "$out/${python.sitePackages}/torch/lib"
'';
# See https://github.com/NixOS/nixpkgs/issues/296179
#
# This is a quick hack to add `libnvrtc` to the runpath so that torch can find
# it when it is needed at runtime.
extraRunpaths = lib.optionals stdenv.hostPlatform.isLinux [
"${lib.getLib cudaPackages.cuda_nvrtc}/lib"
];
postPhases = lib.optionals stdenv.hostPlatform.isLinux [ "postPatchelfPhase" ];
postPatchelfPhase = ''
while IFS= read -r -d $'\0' elf ; do
for extra in $extraRunpaths ; do
echo patchelf "$elf" --add-rpath "$extra" >&2
patchelf "$elf" --add-rpath "$extra"
done
done < <(
find "''${!outputLib}" "$out" -type f -iname '*.so' -print0
)
'';
# The wheel-binary is not stripped to avoid the error of `ImportError: libtorch_cuda_cpp.so: ELF load command address/offset not properly aligned.`.
dontStrip = true;
pythonImportsCheck = [ "torch" ];
passthru.tests = callPackage ./tests.nix { };
meta = {
description = "PyTorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration";
homepage = "https://pytorch.org/";
changelog = "https://github.com/pytorch/pytorch/releases/tag/v${version}";
# Includes CUDA and Intel MKL, but redistributions of the binary are not limited.
# https://docs.nvidia.com/cuda/eula/index.html
# https://www.intel.com/content/www/us/en/developer/articles/license/onemkl-license-faq.html
# torch's license is BSD3.
# torch-bin used to vendor CUDA. It still links against CUDA and MKL.
license = with lib.licenses; [
bsd3
issl
unfreeRedistributable
];
sourceProvenance = with lib.sourceTypes; [ binaryNativeCode ];
platforms = [
"aarch64-darwin"
"aarch64-linux"
"x86_64-linux"
];
hydraPlatforms = [ ]; # output size 3.2G on 1.11.0
maintainers = with lib.maintainers; [ junjihashimoto ];
};
}