depot/third_party/nixpkgs/pkgs/development/python-modules/torchaudio/bin.nix
Default email 5ca88bfbb9 Project import generated by Copybara.
GitOrigin-RevId: 9f918d616c5321ad374ae6cb5ea89c9e04bf3e58
2024-07-31 10:19:44 +00:00

89 lines
2.4 KiB
Nix

{
lib,
stdenv,
addDriverRunpath,
autoPatchelfHook,
buildPythonPackage,
cudaPackages,
fetchurl,
ffmpeg_6,
sox,
pythonAtLeast,
pythonOlder,
python,
torch-bin,
}:
buildPythonPackage rec {
pname = "torchaudio";
version = "2.3.1";
format = "wheel";
src =
let
pyVerNoDot = lib.replaceStrings [ "." ] [ "" ] python.pythonVersion;
unsupported = throw "Unsupported system";
srcs = (import ./binary-hashes.nix version)."${stdenv.system}-${pyVerNoDot}" or unsupported;
in
fetchurl srcs;
disabled = (pythonOlder "3.8") || (pythonAtLeast "3.13");
buildInputs =
[
# We need to patch lib/torio/_torio_ffmpeg6
ffmpeg_6.dev
sox
]
++ lib.optionals stdenv.isLinux (
with cudaPackages;
[
# $out/${sitePackages}/torchaudio/lib/libtorchaudio*.so wants libcudart.so.11.0 but torch/lib only ships
# libcudart.$hash.so.11.0
cuda_cudart
# $out/${sitePackages}/torchaudio/lib/libtorchaudio*.so wants libnvToolsExt.so.2 but torch/lib only ships
# libnvToolsExt-$hash.so.1
cuda_nvtx
]
);
nativeBuildInputs = lib.optionals stdenv.isLinux [
autoPatchelfHook
addDriverRunpath
];
dependencies = [ torch-bin ];
preInstall = lib.optionals stdenv.isLinux ''
addAutoPatchelfSearchPath "${torch-bin}/${python.sitePackages}/torch"
'';
preFixup = ''
# TorchAudio loads the newest FFmpeg that works, so get rid of the
# old ones.
rm $out/${python.sitePackages}/torio/lib/{lib,_}torio_ffmpeg{4,5}.*
'';
# The wheel-binary is not stripped to avoid the error of `ImportError: libtorch_cuda_cpp.so: ELF load command address/offset not properly aligned.`.
dontStrip = true;
pythonImportsCheck = [ "torchaudio" ];
meta = {
description = "PyTorch audio library";
homepage = "https://pytorch.org/";
changelog = "https://github.com/pytorch/audio/releases/tag/v${version}";
# Includes CUDA and Intel MKL, but redistributions of the binary are not limited.
# https://docs.nvidia.com/cuda/eula/index.html
# https://www.intel.com/content/www/us/en/developer/articles/license/onemkl-license-faq.html
license = lib.licenses.bsd3;
sourceProvenance = with lib.sourceTypes; [ binaryNativeCode ];
platforms = [
"aarch64-linux"
"x86_64-linux"
"aarch64-darwin"
];
maintainers = with lib.maintainers; [ junjihashimoto ];
};
}