a3d4720129
GitOrigin-RevId: e182da8622a354d44c39b3d7a542dc12cd7baa5f
265 lines
9.3 KiB
Nix
265 lines
9.3 KiB
Nix
{ stdenv, lib, fetchFromGitHub, fetchpatch, buildPythonPackage, python,
|
||
cudaSupport ? false, cudaPackages, magma,
|
||
mklDnnSupport ? true, useSystemNccl ? true,
|
||
MPISupport ? false, mpi,
|
||
buildDocs ? false,
|
||
|
||
# Native build inputs
|
||
cmake, util-linux, linkFarm, symlinkJoin, which, pybind11, removeReferencesTo,
|
||
|
||
# Build inputs
|
||
numactl,
|
||
CoreServices, libobjc,
|
||
|
||
# Propagated build inputs
|
||
numpy, pyyaml, cffi, click, typing-extensions,
|
||
|
||
# Unit tests
|
||
hypothesis, psutil,
|
||
|
||
# virtual pkg that consistently instantiates blas across nixpkgs
|
||
# See https://github.com/NixOS/nixpkgs/pull/83888
|
||
blas,
|
||
|
||
# ninja (https://ninja-build.org) must be available to run C++ extensions tests,
|
||
ninja,
|
||
|
||
linuxHeaders_5_19,
|
||
|
||
# dependencies for torch.utils.tensorboard
|
||
pillow, six, future, tensorboard, protobuf,
|
||
|
||
isPy3k, pythonOlder }:
|
||
|
||
let
|
||
inherit (cudaPackages) cudatoolkit cudaFlags cudnn nccl;
|
||
in
|
||
|
||
# assert that everything needed for cuda is present and that the correct cuda versions are used
|
||
assert !cudaSupport || (let majorIs = lib.versions.major cudatoolkit.version;
|
||
in majorIs == "9" || majorIs == "10" || majorIs == "11");
|
||
|
||
# confirm that cudatoolkits are sync'd across dependencies
|
||
assert !(MPISupport && cudaSupport) || mpi.cudatoolkit == cudatoolkit;
|
||
assert !cudaSupport || magma.cudatoolkit == cudatoolkit;
|
||
|
||
let
|
||
setBool = v: if v then "1" else "0";
|
||
cudatoolkit_joined = symlinkJoin {
|
||
name = "${cudatoolkit.name}-unsplit";
|
||
# nccl is here purely for semantic grouping it could be moved to nativeBuildInputs
|
||
paths = [ cudatoolkit.out cudatoolkit.lib nccl.dev nccl.out ];
|
||
};
|
||
|
||
# Normally libcuda.so.1 is provided at runtime by nvidia-x11 via
|
||
# LD_LIBRARY_PATH=/run/opengl-driver/lib. We only use the stub
|
||
# libcuda.so from cudatoolkit for running tests, so that we don’t have
|
||
# to recompile pytorch on every update to nvidia-x11 or the kernel.
|
||
cudaStub = linkFarm "cuda-stub" [{
|
||
name = "libcuda.so.1";
|
||
path = "${cudatoolkit}/lib/stubs/libcuda.so";
|
||
}];
|
||
cudaStubEnv = lib.optionalString cudaSupport
|
||
"LD_LIBRARY_PATH=${cudaStub}\${LD_LIBRARY_PATH:+:}$LD_LIBRARY_PATH ";
|
||
|
||
in buildPythonPackage rec {
|
||
pname = "torch";
|
||
# Don't forget to update torch-bin to the same version.
|
||
version = "1.13.1";
|
||
format = "setuptools";
|
||
|
||
disabled = pythonOlder "3.7.0";
|
||
|
||
outputs = [
|
||
"out" # output standard python package
|
||
"dev" # output libtorch headers
|
||
"lib" # output libtorch libraries
|
||
];
|
||
|
||
src = fetchFromGitHub {
|
||
owner = "pytorch";
|
||
repo = "pytorch";
|
||
rev = "refs/tags/v${version}";
|
||
fetchSubmodules = true;
|
||
hash = "sha256-yQz+xHPw9ODRBkV9hv1th38ZmUr/fXa+K+d+cvmX3Z8=";
|
||
};
|
||
|
||
patches = lib.optionals (stdenv.isDarwin && stdenv.isx86_64) [
|
||
# pthreadpool added support for Grand Central Dispatch in April
|
||
# 2020. However, this relies on functionality (DISPATCH_APPLY_AUTO)
|
||
# that is available starting with macOS 10.13. However, our current
|
||
# base is 10.12. Until we upgrade, we can fall back on the older
|
||
# pthread support.
|
||
./pthreadpool-disable-gcd.diff
|
||
];
|
||
|
||
preConfigure = lib.optionalString cudaSupport ''
|
||
export TORCH_CUDA_ARCH_LIST="${cudaFlags.cudaCapabilitiesSemiColonString}"
|
||
export CC=${cudatoolkit.cc}/bin/gcc CXX=${cudatoolkit.cc}/bin/g++
|
||
'' + lib.optionalString (cudaSupport && cudnn != null) ''
|
||
export CUDNN_INCLUDE_DIR=${cudnn}/include
|
||
'';
|
||
|
||
# Use pytorch's custom configurations
|
||
dontUseCmakeConfigure = true;
|
||
|
||
BUILD_NAMEDTENSOR = setBool true;
|
||
BUILD_DOCS = setBool buildDocs;
|
||
|
||
# We only do an imports check, so do not build tests either.
|
||
BUILD_TEST = setBool false;
|
||
|
||
# Unlike MKL, oneDNN (née MKLDNN) is FOSS, so we enable support for
|
||
# it by default. PyTorch currently uses its own vendored version
|
||
# of oneDNN through Intel iDeep.
|
||
USE_MKLDNN = setBool mklDnnSupport;
|
||
USE_MKLDNN_CBLAS = setBool mklDnnSupport;
|
||
|
||
# Avoid using pybind11 from git submodule
|
||
# Also avoids pytorch exporting the headers of pybind11
|
||
USE_SYSTEM_BIND11 = true;
|
||
|
||
preBuild = ''
|
||
export MAX_JOBS=$NIX_BUILD_CORES
|
||
${python.interpreter} setup.py build --cmake-only
|
||
${cmake}/bin/cmake build
|
||
'';
|
||
|
||
preFixup = ''
|
||
function join_by { local IFS="$1"; shift; echo "$*"; }
|
||
function strip2 {
|
||
IFS=':'
|
||
read -ra RP <<< $(patchelf --print-rpath $1)
|
||
IFS=' '
|
||
RP_NEW=$(join_by : ''${RP[@]:2})
|
||
patchelf --set-rpath \$ORIGIN:''${RP_NEW} "$1"
|
||
}
|
||
for f in $(find ''${out} -name 'libcaffe2*.so')
|
||
do
|
||
strip2 $f
|
||
done
|
||
'';
|
||
|
||
# Override the (weirdly) wrong version set by default. See
|
||
# https://github.com/NixOS/nixpkgs/pull/52437#issuecomment-449718038
|
||
# https://github.com/pytorch/pytorch/blob/v1.0.0/setup.py#L267
|
||
PYTORCH_BUILD_VERSION = version;
|
||
PYTORCH_BUILD_NUMBER = 0;
|
||
|
||
USE_SYSTEM_NCCL = setBool useSystemNccl; # don't build pytorch's third_party NCCL
|
||
|
||
# Suppress a weird warning in mkl-dnn, part of ideep in pytorch
|
||
# (upstream seems to have fixed this in the wrong place?)
|
||
# https://github.com/intel/mkl-dnn/commit/8134d346cdb7fe1695a2aa55771071d455fae0bc
|
||
# https://github.com/pytorch/pytorch/issues/22346
|
||
#
|
||
# Also of interest: pytorch ignores CXXFLAGS uses CFLAGS for both C and C++:
|
||
# https://github.com/pytorch/pytorch/blob/v1.11.0/setup.py#L17
|
||
NIX_CFLAGS_COMPILE = lib.optionals (blas.implementation == "mkl") [ "-Wno-error=array-bounds" ];
|
||
|
||
nativeBuildInputs = [
|
||
cmake
|
||
util-linux
|
||
which
|
||
ninja
|
||
pybind11
|
||
removeReferencesTo
|
||
] ++ lib.optionals cudaSupport [ cudatoolkit_joined ];
|
||
|
||
buildInputs = [ blas blas.provider pybind11 ]
|
||
++ [ linuxHeaders_5_19 ] # TMP: avoid "flexible array member" errors for now
|
||
++ lib.optionals cudaSupport [ cudnn magma nccl ]
|
||
++ lib.optionals stdenv.isLinux [ numactl ]
|
||
++ lib.optionals stdenv.isDarwin [ CoreServices libobjc ];
|
||
|
||
propagatedBuildInputs = [
|
||
cffi
|
||
click
|
||
numpy
|
||
pyyaml
|
||
typing-extensions
|
||
# the following are required for tensorboard support
|
||
pillow six future tensorboard protobuf
|
||
] ++ lib.optionals MPISupport [ mpi ];
|
||
|
||
# Tests take a long time and may be flaky, so just sanity-check imports
|
||
doCheck = false;
|
||
|
||
pythonImportsCheck = [
|
||
"torch"
|
||
];
|
||
|
||
checkInputs = [ hypothesis ninja psutil ];
|
||
|
||
checkPhase = with lib.versions; with lib.strings; concatStringsSep " " [
|
||
"runHook preCheck"
|
||
cudaStubEnv
|
||
"${python.interpreter} test/run_test.py"
|
||
"--exclude"
|
||
(concatStringsSep " " [
|
||
"utils" # utils requires git, which is not allowed in the check phase
|
||
|
||
# "dataloader" # psutils correctly finds and triggers multiprocessing, but is too sandboxed to run -- resulting in numerous errors
|
||
# ^^^^^^^^^^^^ NOTE: while test_dataloader does return errors, these are acceptable errors and do not interfere with the build
|
||
|
||
# tensorboard has acceptable failures for pytorch 1.3.x due to dependencies on tensorboard-plugins
|
||
(optionalString (majorMinor version == "1.3" ) "tensorboard")
|
||
])
|
||
"runHook postCheck"
|
||
];
|
||
|
||
postInstall = ''
|
||
find "$out/${python.sitePackages}/torch/include" "$out/${python.sitePackages}/torch/lib" -type f -exec remove-references-to -t ${stdenv.cc} '{}' +
|
||
|
||
mkdir $dev
|
||
cp -r $out/${python.sitePackages}/torch/include $dev/include
|
||
cp -r $out/${python.sitePackages}/torch/share $dev/share
|
||
|
||
# Fix up library paths for split outputs
|
||
substituteInPlace \
|
||
$dev/share/cmake/Torch/TorchConfig.cmake \
|
||
--replace \''${TORCH_INSTALL_PREFIX}/lib "$lib/lib"
|
||
|
||
substituteInPlace \
|
||
$dev/share/cmake/Caffe2/Caffe2Targets-release.cmake \
|
||
--replace \''${_IMPORT_PREFIX}/lib "$lib/lib"
|
||
|
||
mkdir $lib
|
||
mv $out/${python.sitePackages}/torch/lib $lib/lib
|
||
ln -s $lib/lib $out/${python.sitePackages}/torch/lib
|
||
'';
|
||
|
||
postFixup = lib.optionalString stdenv.isDarwin ''
|
||
for f in $(ls $lib/lib/*.dylib); do
|
||
install_name_tool -id $lib/lib/$(basename $f) $f || true
|
||
done
|
||
|
||
install_name_tool -change @rpath/libshm.dylib $lib/lib/libshm.dylib $lib/lib/libtorch_python.dylib
|
||
install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libtorch_python.dylib
|
||
install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch_python.dylib
|
||
|
||
install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch.dylib
|
||
|
||
install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libshm.dylib
|
||
install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libshm.dylib
|
||
'';
|
||
|
||
# Builds in 2+h with 2 cores, and ~15m with a big-parallel builder.
|
||
requiredSystemFeatures = [ "big-parallel" ];
|
||
|
||
passthru = {
|
||
inherit cudaSupport cudaPackages;
|
||
# At least for 1.10.2 `torch.fft` is unavailable unless BLAS provider is MKL. This attribute allows for easy detection of its availability.
|
||
blasProvider = blas.provider;
|
||
};
|
||
|
||
meta = with lib; {
|
||
changelog = "https://github.com/pytorch/pytorch/releases/tag/v${version}";
|
||
# keep PyTorch in the description so the package can be found under that name on search.nixos.org
|
||
description = "PyTorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration";
|
||
homepage = "https://pytorch.org/";
|
||
license = licenses.bsd3;
|
||
maintainers = with maintainers; [ teh thoughtpolice tscholak ]; # tscholak esp. for darwin-related builds
|
||
platforms = with platforms; linux ++ lib.optionals (!cudaSupport) darwin;
|
||
};
|
||
}
|