24fdeddc0a
GitOrigin-RevId: 2768c7d042a37de65bb1b5b3268fc987e534c49d
697 lines
23 KiB
Nix
697 lines
23 KiB
Nix
{
|
||
stdenv,
|
||
lib,
|
||
fetchFromGitHub,
|
||
buildPythonPackage,
|
||
python,
|
||
config,
|
||
cudaSupport ? config.cudaSupport,
|
||
cudaPackages,
|
||
autoAddDriverRunpath,
|
||
effectiveMagma ?
|
||
if cudaSupport then
|
||
magma-cuda-static
|
||
else if rocmSupport then
|
||
magma-hip
|
||
else
|
||
magma,
|
||
magma,
|
||
magma-hip,
|
||
magma-cuda-static,
|
||
# Use the system NCCL as long as we're targeting CUDA on a supported platform.
|
||
useSystemNccl ? (cudaSupport && !cudaPackages.nccl.meta.unsupported || rocmSupport),
|
||
MPISupport ? false,
|
||
mpi,
|
||
buildDocs ? false,
|
||
|
||
# tests.cudaAvailable:
|
||
callPackage,
|
||
|
||
# Native build inputs
|
||
cmake,
|
||
symlinkJoin,
|
||
which,
|
||
pybind11,
|
||
removeReferencesTo,
|
||
|
||
# Build inputs
|
||
darwin,
|
||
numactl,
|
||
|
||
# dependencies
|
||
astunparse,
|
||
fsspec,
|
||
filelock,
|
||
jinja2,
|
||
networkx,
|
||
sympy,
|
||
numpy,
|
||
pyyaml,
|
||
cffi,
|
||
click,
|
||
typing-extensions,
|
||
# ROCm build and `torch.compile` requires `triton`
|
||
tritonSupport ? (!stdenv.hostPlatform.isDarwin),
|
||
triton,
|
||
|
||
# TODO: 1. callPackage needs to learn to distinguish between the task
|
||
# of "asking for an attribute from the parent scope" and
|
||
# the task of "exposing a formal parameter in .override".
|
||
# TODO: 2. We should probably abandon attributes such as `torchWithCuda` (etc.)
|
||
# as they routinely end up consuming the wrong arguments\
|
||
# (dependencies without cuda support).
|
||
# Instead we should rely on overlays and nixpkgsFun.
|
||
# (@SomeoneSerge)
|
||
_tritonEffective ? if cudaSupport then triton-cuda else triton,
|
||
triton-cuda,
|
||
|
||
# Unit tests
|
||
hypothesis,
|
||
psutil,
|
||
|
||
# Disable MKLDNN on aarch64-darwin, it negatively impacts performance,
|
||
# this is also what official pytorch build does
|
||
mklDnnSupport ? !(stdenv.hostPlatform.isDarwin && stdenv.hostPlatform.isAarch64),
|
||
|
||
# virtual pkg that consistently instantiates blas across nixpkgs
|
||
# See https://github.com/NixOS/nixpkgs/pull/83888
|
||
blas,
|
||
|
||
# ninja (https://ninja-build.org) must be available to run C++ extensions tests,
|
||
ninja,
|
||
|
||
# dependencies for torch.utils.tensorboard
|
||
pillow,
|
||
six,
|
||
future,
|
||
tensorboard,
|
||
protobuf,
|
||
|
||
# ROCm dependencies
|
||
rocmSupport ? config.rocmSupport,
|
||
rocmPackages_5,
|
||
gpuTargets ? [ ],
|
||
}:
|
||
|
||
let
|
||
inherit (lib)
|
||
attrsets
|
||
lists
|
||
strings
|
||
trivial
|
||
;
|
||
inherit (cudaPackages) cudaFlags cudnn nccl;
|
||
|
||
triton = throw "python3Packages.torch: use _tritonEffective instead of triton to avoid divergence";
|
||
|
||
rocmPackages = rocmPackages_5;
|
||
|
||
setBool = v: if v then "1" else "0";
|
||
|
||
# https://github.com/pytorch/pytorch/blob/v2.4.0/torch/utils/cpp_extension.py#L1953
|
||
supportedTorchCudaCapabilities =
|
||
let
|
||
real = [
|
||
"3.5"
|
||
"3.7"
|
||
"5.0"
|
||
"5.2"
|
||
"5.3"
|
||
"6.0"
|
||
"6.1"
|
||
"6.2"
|
||
"7.0"
|
||
"7.2"
|
||
"7.5"
|
||
"8.0"
|
||
"8.6"
|
||
"8.7"
|
||
"8.9"
|
||
"9.0"
|
||
"9.0a"
|
||
];
|
||
ptx = lists.map (x: "${x}+PTX") real;
|
||
in
|
||
real ++ ptx;
|
||
|
||
# NOTE: The lists.subtractLists function is perhaps a bit unintuitive. It subtracts the elements
|
||
# of the first list *from* the second list. That means:
|
||
# lists.subtractLists a b = b - a
|
||
|
||
# For CUDA
|
||
supportedCudaCapabilities = lists.intersectLists cudaFlags.cudaCapabilities supportedTorchCudaCapabilities;
|
||
unsupportedCudaCapabilities = lists.subtractLists supportedCudaCapabilities cudaFlags.cudaCapabilities;
|
||
|
||
# Use trivial.warnIf to print a warning if any unsupported GPU targets are specified.
|
||
gpuArchWarner =
|
||
supported: unsupported:
|
||
trivial.throwIf (supported == [ ]) (
|
||
"No supported GPU targets specified. Requested GPU targets: "
|
||
+ strings.concatStringsSep ", " unsupported
|
||
) supported;
|
||
|
||
# Create the gpuTargetString.
|
||
gpuTargetString = strings.concatStringsSep ";" (
|
||
if gpuTargets != [ ] then
|
||
# If gpuTargets is specified, it always takes priority.
|
||
gpuTargets
|
||
else if cudaSupport then
|
||
gpuArchWarner supportedCudaCapabilities unsupportedCudaCapabilities
|
||
else if rocmSupport then
|
||
rocmPackages.clr.gpuTargets
|
||
else
|
||
throw "No GPU targets specified"
|
||
);
|
||
|
||
rocmtoolkit_joined = symlinkJoin {
|
||
name = "rocm-merged";
|
||
|
||
paths = with rocmPackages; [
|
||
rocm-core
|
||
clr
|
||
rccl
|
||
miopen
|
||
miopengemm
|
||
rocrand
|
||
rocblas
|
||
rocsparse
|
||
hipsparse
|
||
rocthrust
|
||
rocprim
|
||
hipcub
|
||
roctracer
|
||
rocfft
|
||
rocsolver
|
||
hipfft
|
||
hipsolver
|
||
hipblas
|
||
rocminfo
|
||
rocm-thunk
|
||
rocm-comgr
|
||
rocm-device-libs
|
||
rocm-runtime
|
||
clr.icd
|
||
hipify
|
||
];
|
||
|
||
# Fix `setuptools` not being found
|
||
postBuild = ''
|
||
rm -rf $out/nix-support
|
||
'';
|
||
};
|
||
|
||
brokenConditions = attrsets.filterAttrs (_: cond: cond) {
|
||
"CUDA and ROCm are mutually exclusive" = cudaSupport && rocmSupport;
|
||
"CUDA is not targeting Linux" = cudaSupport && !stdenv.hostPlatform.isLinux;
|
||
"Unsupported CUDA version" =
|
||
cudaSupport
|
||
&& !(builtins.elem cudaPackages.cudaMajorVersion [
|
||
"11"
|
||
"12"
|
||
]);
|
||
"MPI cudatoolkit does not match cudaPackages.cudatoolkit" =
|
||
MPISupport && cudaSupport && (mpi.cudatoolkit != cudaPackages.cudatoolkit);
|
||
# This used to be a deep package set comparison between cudaPackages and
|
||
# effectiveMagma.cudaPackages, making torch too strict in cudaPackages.
|
||
# In particular, this triggered warnings from cuda's `aliases.nix`
|
||
"Magma cudaPackages does not match cudaPackages" =
|
||
cudaSupport && (effectiveMagma.cudaPackages.cudaVersion != cudaPackages.cudaVersion);
|
||
"Rocm support is currently broken because `rocmPackages.hipblaslt` is unpackaged. (2024-06-09)" =
|
||
rocmSupport;
|
||
};
|
||
in
|
||
buildPythonPackage rec {
|
||
pname = "torch";
|
||
# Don't forget to update torch-bin to the same version.
|
||
version = "2.5.0";
|
||
pyproject = true;
|
||
|
||
outputs = [
|
||
"out" # output standard python package
|
||
"dev" # output libtorch headers
|
||
"lib" # output libtorch libraries
|
||
"cxxdev" # propagated deps for the cmake consumers of torch
|
||
];
|
||
cudaPropagateToOutput = "cxxdev";
|
||
|
||
src = fetchFromGitHub {
|
||
owner = "pytorch";
|
||
repo = "pytorch";
|
||
rev = "refs/tags/v${version}";
|
||
fetchSubmodules = true;
|
||
hash = "sha256-z41VAN4l/6hyHsxNOnJORy5EQK93kSMkDHRVQrdxv7k=";
|
||
};
|
||
|
||
patches =
|
||
lib.optionals cudaSupport [ ./fix-cmake-cuda-toolkit.patch ]
|
||
++ lib.optionals (stdenv.hostPlatform.isDarwin && stdenv.hostPlatform.isx86_64) [
|
||
# pthreadpool added support for Grand Central Dispatch in April
|
||
# 2020. However, this relies on functionality (DISPATCH_APPLY_AUTO)
|
||
# that is available starting with macOS 10.13. However, our current
|
||
# base is 10.12. Until we upgrade, we can fall back on the older
|
||
# pthread support.
|
||
./pthreadpool-disable-gcd.diff
|
||
]
|
||
++ lib.optionals stdenv.hostPlatform.isLinux [
|
||
# Propagate CUPTI to Kineto by overriding the search path with environment variables.
|
||
# https://github.com/pytorch/pytorch/pull/108847
|
||
./pytorch-pr-108847.patch
|
||
];
|
||
|
||
postPatch =
|
||
''
|
||
substituteInPlace cmake/public/cuda.cmake \
|
||
--replace-fail \
|
||
'message(FATAL_ERROR "Found two conflicting CUDA' \
|
||
'message(WARNING "Found two conflicting CUDA' \
|
||
--replace-warn \
|
||
"set(CUDAToolkit_ROOT" \
|
||
"# Upstream: set(CUDAToolkit_ROOT"
|
||
substituteInPlace third_party/gloo/cmake/Cuda.cmake \
|
||
--replace-warn "find_package(CUDAToolkit 7.0" "find_package(CUDAToolkit"
|
||
''
|
||
+ lib.optionalString rocmSupport ''
|
||
# https://github.com/facebookincubator/gloo/pull/297
|
||
substituteInPlace third_party/gloo/cmake/Hipify.cmake \
|
||
--replace "\''${HIPIFY_COMMAND}" "python \''${HIPIFY_COMMAND}"
|
||
|
||
# Replace hard-coded rocm paths
|
||
substituteInPlace caffe2/CMakeLists.txt \
|
||
--replace "/opt/rocm" "${rocmtoolkit_joined}" \
|
||
--replace "hcc/include" "hip/include" \
|
||
--replace "rocblas/include" "include/rocblas" \
|
||
--replace "hipsparse/include" "include/hipsparse"
|
||
|
||
# Doesn't pick up the environment variable?
|
||
substituteInPlace third_party/kineto/libkineto/CMakeLists.txt \
|
||
--replace "\''$ENV{ROCM_SOURCE_DIR}" "${rocmtoolkit_joined}" \
|
||
--replace "/opt/rocm" "${rocmtoolkit_joined}"
|
||
|
||
# Strangely, this is never set in cmake
|
||
substituteInPlace cmake/public/LoadHIP.cmake \
|
||
--replace "set(ROCM_PATH \$ENV{ROCM_PATH})" \
|
||
"set(ROCM_PATH \$ENV{ROCM_PATH})''\nset(ROCM_VERSION ${lib.concatStrings (lib.intersperse "0" (lib.splitVersion rocmPackages.clr.version))})"
|
||
''
|
||
# Detection of NCCL version doesn't work particularly well when using the static binary.
|
||
+ lib.optionalString cudaSupport ''
|
||
substituteInPlace cmake/Modules/FindNCCL.cmake \
|
||
--replace \
|
||
'message(FATAL_ERROR "Found NCCL header version and library version' \
|
||
'message(WARNING "Found NCCL header version and library version'
|
||
''
|
||
# Remove PyTorch's FindCUDAToolkit.cmake and use CMake's default.
|
||
# NOTE: Parts of pytorch rely on unmaintained FindCUDA.cmake with custom patches to support e.g.
|
||
# newer architectures (sm_90a). We do want to delete vendored patches, but have to keep them
|
||
# until https://github.com/pytorch/pytorch/issues/76082 is addressed
|
||
+ lib.optionalString cudaSupport ''
|
||
rm cmake/Modules/FindCUDAToolkit.cmake
|
||
''
|
||
# error: no member named 'aligned_alloc' in the global namespace; did you mean simply 'aligned_alloc'
|
||
# This lib overrided aligned_alloc hence the error message. Tltr: his function is linkable but not in header.
|
||
+
|
||
lib.optionalString
|
||
(stdenv.hostPlatform.isDarwin && lib.versionOlder stdenv.hostPlatform.darwinSdkVersion "11.0")
|
||
''
|
||
substituteInPlace third_party/pocketfft/pocketfft_hdronly.h --replace-fail '#if (__cplusplus >= 201703L) && (!defined(__MINGW32__)) && (!defined(_MSC_VER))
|
||
inline void *aligned_alloc(size_t align, size_t size)' '#if 0
|
||
inline void *aligned_alloc(size_t align, size_t size)'
|
||
'';
|
||
|
||
# NOTE(@connorbaker): Though we do not disable Gloo or MPI when building with CUDA support, caution should be taken
|
||
# when using the different backends. Gloo's GPU support isn't great, and MPI and CUDA can't be used at the same time
|
||
# without extreme care to ensure they don't lock each other out of shared resources.
|
||
# For more, see https://github.com/open-mpi/ompi/issues/7733#issuecomment-629806195.
|
||
preConfigure =
|
||
lib.optionalString cudaSupport ''
|
||
export TORCH_CUDA_ARCH_LIST="${gpuTargetString}"
|
||
export CUPTI_INCLUDE_DIR=${lib.getDev cudaPackages.cuda_cupti}/include
|
||
export CUPTI_LIBRARY_DIR=${lib.getLib cudaPackages.cuda_cupti}/lib
|
||
''
|
||
+ lib.optionalString (cudaSupport && cudaPackages ? cudnn) ''
|
||
export CUDNN_INCLUDE_DIR=${lib.getLib cudnn}/include
|
||
export CUDNN_LIB_DIR=${cudnn.lib}/lib
|
||
''
|
||
+ lib.optionalString rocmSupport ''
|
||
export ROCM_PATH=${rocmtoolkit_joined}
|
||
export ROCM_SOURCE_DIR=${rocmtoolkit_joined}
|
||
export PYTORCH_ROCM_ARCH="${gpuTargetString}"
|
||
export CMAKE_CXX_FLAGS="-I${rocmtoolkit_joined}/include -I${rocmtoolkit_joined}/include/rocblas"
|
||
python tools/amd_build/build_amd.py
|
||
'';
|
||
|
||
# Use pytorch's custom configurations
|
||
dontUseCmakeConfigure = true;
|
||
|
||
# causes possible redefinition of _FORTIFY_SOURCE
|
||
hardeningDisable = [ "fortify3" ];
|
||
|
||
BUILD_NAMEDTENSOR = setBool true;
|
||
BUILD_DOCS = setBool buildDocs;
|
||
|
||
# We only do an imports check, so do not build tests either.
|
||
BUILD_TEST = setBool false;
|
||
|
||
# Unlike MKL, oneDNN (née MKLDNN) is FOSS, so we enable support for
|
||
# it by default. PyTorch currently uses its own vendored version
|
||
# of oneDNN through Intel iDeep.
|
||
USE_MKLDNN = setBool mklDnnSupport;
|
||
USE_MKLDNN_CBLAS = setBool mklDnnSupport;
|
||
|
||
# Avoid using pybind11 from git submodule
|
||
# Also avoids pytorch exporting the headers of pybind11
|
||
USE_SYSTEM_PYBIND11 = true;
|
||
|
||
# NB technical debt: building without NNPACK as workaround for missing `six`
|
||
USE_NNPACK = 0;
|
||
|
||
cmakeFlags =
|
||
[
|
||
# (lib.cmakeBool "CMAKE_FIND_DEBUG_MODE" true)
|
||
(lib.cmakeFeature "CUDAToolkit_VERSION" cudaPackages.cudaVersion)
|
||
]
|
||
++ lib.optionals cudaSupport [
|
||
# Unbreaks version discovery in enable_language(CUDA) when wrapping nvcc with ccache
|
||
# Cf. https://gitlab.kitware.com/cmake/cmake/-/issues/26363
|
||
(lib.cmakeFeature "CMAKE_CUDA_COMPILER_TOOLKIT_VERSION" cudaPackages.cudaVersion)
|
||
];
|
||
|
||
preBuild = ''
|
||
export MAX_JOBS=$NIX_BUILD_CORES
|
||
${python.pythonOnBuildForHost.interpreter} setup.py build --cmake-only
|
||
${cmake}/bin/cmake build
|
||
'';
|
||
|
||
preFixup = ''
|
||
function join_by { local IFS="$1"; shift; echo "$*"; }
|
||
function strip2 {
|
||
IFS=':'
|
||
read -ra RP <<< $(patchelf --print-rpath $1)
|
||
IFS=' '
|
||
RP_NEW=$(join_by : ''${RP[@]:2})
|
||
patchelf --set-rpath \$ORIGIN:''${RP_NEW} "$1"
|
||
}
|
||
for f in $(find ''${out} -name 'libcaffe2*.so')
|
||
do
|
||
strip2 $f
|
||
done
|
||
'';
|
||
|
||
# Override the (weirdly) wrong version set by default. See
|
||
# https://github.com/NixOS/nixpkgs/pull/52437#issuecomment-449718038
|
||
# https://github.com/pytorch/pytorch/blob/v1.0.0/setup.py#L267
|
||
PYTORCH_BUILD_VERSION = version;
|
||
PYTORCH_BUILD_NUMBER = 0;
|
||
|
||
# In-tree builds of NCCL are not supported.
|
||
# Use NCCL when cudaSupport is enabled and nccl is available.
|
||
USE_NCCL = setBool useSystemNccl;
|
||
USE_SYSTEM_NCCL = USE_NCCL;
|
||
USE_STATIC_NCCL = USE_NCCL;
|
||
|
||
# Set the correct Python library path, broken since
|
||
# https://github.com/pytorch/pytorch/commit/3d617333e
|
||
PYTHON_LIB_REL_PATH = "${placeholder "out"}/${python.sitePackages}";
|
||
|
||
# Suppress a weird warning in mkl-dnn, part of ideep in pytorch
|
||
# (upstream seems to have fixed this in the wrong place?)
|
||
# https://github.com/intel/mkl-dnn/commit/8134d346cdb7fe1695a2aa55771071d455fae0bc
|
||
# https://github.com/pytorch/pytorch/issues/22346
|
||
#
|
||
# Also of interest: pytorch ignores CXXFLAGS uses CFLAGS for both C and C++:
|
||
# https://github.com/pytorch/pytorch/blob/v1.11.0/setup.py#L17
|
||
env.NIX_CFLAGS_COMPILE = toString (
|
||
(
|
||
lib.optionals (blas.implementation == "mkl") [ "-Wno-error=array-bounds" ]
|
||
# Suppress gcc regression: avx512 math function raises uninitialized variable warning
|
||
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105593
|
||
# See also: Fails to compile with GCC 12.1.0 https://github.com/pytorch/pytorch/issues/77939
|
||
++ lib.optionals (stdenv.cc.isGNU && lib.versionAtLeast stdenv.cc.version "12.0.0") [
|
||
"-Wno-error=maybe-uninitialized"
|
||
"-Wno-error=uninitialized"
|
||
]
|
||
# Since pytorch 2.0:
|
||
# gcc-12.2.0/include/c++/12.2.0/bits/new_allocator.h:158:33: error: ‘void operator delete(void*, std::size_t)’
|
||
# ... called on pointer ‘<unknown>’ with nonzero offset [1, 9223372036854775800] [-Werror=free-nonheap-object]
|
||
++ lib.optionals (stdenv.cc.isGNU && lib.versions.major stdenv.cc.version == "12") [
|
||
"-Wno-error=free-nonheap-object"
|
||
]
|
||
# .../source/torch/csrc/autograd/generated/python_functions_0.cpp:85:3:
|
||
# error: cast from ... to ... converts to incompatible function type [-Werror,-Wcast-function-type-strict]
|
||
++ lib.optionals (stdenv.cc.isClang && lib.versionAtLeast stdenv.cc.version "16") [
|
||
"-Wno-error=cast-function-type-strict"
|
||
# Suppresses the most spammy warnings.
|
||
# This is mainly to fix https://github.com/NixOS/nixpkgs/issues/266895.
|
||
]
|
||
++ lib.optionals rocmSupport [
|
||
"-Wno-#warnings"
|
||
"-Wno-cpp"
|
||
"-Wno-unknown-warning-option"
|
||
"-Wno-ignored-attributes"
|
||
"-Wno-deprecated-declarations"
|
||
"-Wno-defaulted-function-deleted"
|
||
"-Wno-pass-failed"
|
||
]
|
||
++ [
|
||
"-Wno-unused-command-line-argument"
|
||
"-Wno-uninitialized"
|
||
"-Wno-array-bounds"
|
||
"-Wno-free-nonheap-object"
|
||
"-Wno-unused-result"
|
||
]
|
||
++ lib.optionals stdenv.cc.isGNU [
|
||
"-Wno-maybe-uninitialized"
|
||
"-Wno-stringop-overflow"
|
||
]
|
||
)
|
||
);
|
||
|
||
nativeBuildInputs =
|
||
[
|
||
cmake
|
||
which
|
||
ninja
|
||
pybind11
|
||
removeReferencesTo
|
||
]
|
||
++ lib.optionals cudaSupport (
|
||
with cudaPackages;
|
||
[
|
||
autoAddDriverRunpath
|
||
cuda_nvcc
|
||
]
|
||
)
|
||
++ lib.optionals rocmSupport [ rocmtoolkit_joined ];
|
||
|
||
buildInputs =
|
||
[
|
||
blas
|
||
blas.provider
|
||
]
|
||
++ lib.optionals cudaSupport (
|
||
with cudaPackages;
|
||
[
|
||
cuda_cccl # <thrust/*>
|
||
cuda_cudart # cuda_runtime.h and libraries
|
||
cuda_cupti # For kineto
|
||
cuda_nvcc # crt/host_config.h; even though we include this in nativeBuildInputs, it's needed here too
|
||
cuda_nvml_dev # <nvml.h>
|
||
cuda_nvrtc
|
||
cuda_nvtx # -llibNVToolsExt
|
||
libcublas
|
||
libcufft
|
||
libcurand
|
||
libcusolver
|
||
libcusparse
|
||
]
|
||
++ lists.optionals (cudaPackages ? cudnn) [ cudnn ]
|
||
++ lists.optionals useSystemNccl [
|
||
# Some platforms do not support NCCL (i.e., Jetson)
|
||
nccl # Provides nccl.h AND a static copy of NCCL!
|
||
]
|
||
++ lists.optionals (strings.versionOlder cudaVersion "11.8") [
|
||
cuda_nvprof # <cuda_profiler_api.h>
|
||
]
|
||
++ lists.optionals (strings.versionAtLeast cudaVersion "11.8") [
|
||
cuda_profiler_api # <cuda_profiler_api.h>
|
||
]
|
||
)
|
||
++ lib.optionals rocmSupport [ rocmPackages.llvm.openmp ]
|
||
++ lib.optionals (cudaSupport || rocmSupport) [ effectiveMagma ]
|
||
++ lib.optionals stdenv.hostPlatform.isLinux [ numactl ]
|
||
++ lib.optionals stdenv.hostPlatform.isDarwin [
|
||
darwin.apple_sdk.frameworks.Accelerate
|
||
darwin.apple_sdk.frameworks.CoreServices
|
||
darwin.libobjc
|
||
]
|
||
++ lib.optionals tritonSupport [ _tritonEffective ]
|
||
++ lib.optionals MPISupport [ mpi ]
|
||
++ lib.optionals rocmSupport [ rocmtoolkit_joined ];
|
||
|
||
pythonRelaxDeps = [
|
||
"sympy"
|
||
];
|
||
dependencies = [
|
||
astunparse
|
||
cffi
|
||
click
|
||
numpy
|
||
pyyaml
|
||
|
||
# From install_requires:
|
||
fsspec
|
||
filelock
|
||
typing-extensions
|
||
sympy
|
||
networkx
|
||
jinja2
|
||
|
||
# the following are required for tensorboard support
|
||
pillow
|
||
six
|
||
future
|
||
tensorboard
|
||
protobuf
|
||
|
||
# torch/csrc requires `pybind11` at runtime
|
||
pybind11
|
||
] ++ lib.optionals tritonSupport [ _tritonEffective ];
|
||
|
||
propagatedCxxBuildInputs =
|
||
[ ] ++ lib.optionals MPISupport [ mpi ] ++ lib.optionals rocmSupport [ rocmtoolkit_joined ];
|
||
|
||
# Tests take a long time and may be flaky, so just sanity-check imports
|
||
doCheck = false;
|
||
|
||
pythonImportsCheck = [ "torch" ];
|
||
|
||
nativeCheckInputs = [
|
||
hypothesis
|
||
ninja
|
||
psutil
|
||
];
|
||
|
||
checkPhase =
|
||
with lib.versions;
|
||
with lib.strings;
|
||
concatStringsSep " " [
|
||
"runHook preCheck"
|
||
"${python.interpreter} test/run_test.py"
|
||
"--exclude"
|
||
(concatStringsSep " " [
|
||
"utils" # utils requires git, which is not allowed in the check phase
|
||
|
||
# "dataloader" # psutils correctly finds and triggers multiprocessing, but is too sandboxed to run -- resulting in numerous errors
|
||
# ^^^^^^^^^^^^ NOTE: while test_dataloader does return errors, these are acceptable errors and do not interfere with the build
|
||
|
||
# tensorboard has acceptable failures for pytorch 1.3.x due to dependencies on tensorboard-plugins
|
||
(optionalString (majorMinor version == "1.3") "tensorboard")
|
||
])
|
||
"runHook postCheck"
|
||
];
|
||
|
||
pythonRemoveDeps = [
|
||
# In our dist-info the name is just "triton"
|
||
"pytorch-triton-rocm"
|
||
];
|
||
|
||
postInstall =
|
||
''
|
||
find "$out/${python.sitePackages}/torch/include" "$out/${python.sitePackages}/torch/lib" -type f -exec remove-references-to -t ${stdenv.cc} '{}' +
|
||
|
||
mkdir $dev
|
||
cp -r $out/${python.sitePackages}/torch/include $dev/include
|
||
cp -r $out/${python.sitePackages}/torch/share $dev/share
|
||
|
||
# Fix up library paths for split outputs
|
||
substituteInPlace \
|
||
$dev/share/cmake/Torch/TorchConfig.cmake \
|
||
--replace \''${TORCH_INSTALL_PREFIX}/lib "$lib/lib"
|
||
|
||
substituteInPlace \
|
||
$dev/share/cmake/Caffe2/Caffe2Targets-release.cmake \
|
||
--replace \''${_IMPORT_PREFIX}/lib "$lib/lib"
|
||
|
||
mkdir $lib
|
||
mv $out/${python.sitePackages}/torch/lib $lib/lib
|
||
ln -s $lib/lib $out/${python.sitePackages}/torch/lib
|
||
''
|
||
+ lib.optionalString rocmSupport ''
|
||
substituteInPlace $dev/share/cmake/Tensorpipe/TensorpipeTargets-release.cmake \
|
||
--replace "\''${_IMPORT_PREFIX}/lib64" "$lib/lib"
|
||
|
||
substituteInPlace $dev/share/cmake/ATen/ATenConfig.cmake \
|
||
--replace "/build/source/torch/include" "$dev/include"
|
||
'';
|
||
|
||
postFixup =
|
||
''
|
||
mkdir -p "$cxxdev/nix-support"
|
||
printWords "''${propagatedCxxBuildInputs[@]}" >> "$cxxdev/nix-support/propagated-build-inputs"
|
||
''
|
||
+ lib.optionalString stdenv.hostPlatform.isDarwin ''
|
||
for f in $(ls $lib/lib/*.dylib); do
|
||
install_name_tool -id $lib/lib/$(basename $f) $f || true
|
||
done
|
||
|
||
install_name_tool -change @rpath/libshm.dylib $lib/lib/libshm.dylib $lib/lib/libtorch_python.dylib
|
||
install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libtorch_python.dylib
|
||
install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch_python.dylib
|
||
|
||
install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch.dylib
|
||
|
||
install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libshm.dylib
|
||
install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libshm.dylib
|
||
'';
|
||
|
||
# See https://github.com/NixOS/nixpkgs/issues/296179
|
||
#
|
||
# This is a quick hack to add `libnvrtc` to the runpath so that torch can find
|
||
# it when it is needed at runtime.
|
||
extraRunpaths = lib.optionals cudaSupport [ "${lib.getLib cudaPackages.cuda_nvrtc}/lib" ];
|
||
postPhases = lib.optionals stdenv.hostPlatform.isLinux [ "postPatchelfPhase" ];
|
||
postPatchelfPhase = ''
|
||
while IFS= read -r -d $'\0' elf ; do
|
||
for extra in $extraRunpaths ; do
|
||
echo patchelf "$elf" --add-rpath "$extra" >&2
|
||
patchelf "$elf" --add-rpath "$extra"
|
||
done
|
||
done < <(
|
||
find "''${!outputLib}" "$out" -type f -iname '*.so' -print0
|
||
)
|
||
'';
|
||
|
||
# Builds in 2+h with 2 cores, and ~15m with a big-parallel builder.
|
||
requiredSystemFeatures = [ "big-parallel" ];
|
||
|
||
passthru = {
|
||
inherit
|
||
cudaSupport
|
||
cudaPackages
|
||
rocmSupport
|
||
rocmPackages
|
||
;
|
||
cudaCapabilities = if cudaSupport then supportedCudaCapabilities else [ ];
|
||
# At least for 1.10.2 `torch.fft` is unavailable unless BLAS provider is MKL. This attribute allows for easy detection of its availability.
|
||
blasProvider = blas.provider;
|
||
# To help debug when a package is broken due to CUDA support
|
||
inherit brokenConditions;
|
||
tests = callPackage ./tests.nix { };
|
||
};
|
||
|
||
meta = {
|
||
changelog = "https://github.com/pytorch/pytorch/releases/tag/v${version}";
|
||
# keep PyTorch in the description so the package can be found under that name on search.nixos.org
|
||
description = "PyTorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration";
|
||
homepage = "https://pytorch.org/";
|
||
license = lib.licenses.bsd3;
|
||
maintainers = with lib.maintainers; [
|
||
teh
|
||
thoughtpolice
|
||
tscholak
|
||
]; # tscholak esp. for darwin-related builds
|
||
platforms =
|
||
lib.platforms.linux
|
||
++ lib.optionals (!cudaSupport && !rocmSupport) lib.platforms.darwin;
|
||
broken = builtins.any trivial.id (builtins.attrValues brokenConditions);
|
||
};
|
||
}
|