13 KiB
Global configuration
Nix comes with certain defaults about which packages can and cannot be installed, based on a package's metadata. By default, Nix will prevent installation if any of the following criteria are true:
-
The package is thought to be broken, and has had its
meta.broken
set totrue
. -
The package isn't intended to run on the given system, as none of its
meta.platforms
match the given system. -
The package's
meta.license
is set to a license which is considered to be unfree. -
The package has known security vulnerabilities but has not or can not be updated for some reason, and a list of issues has been entered in to the package's
meta.knownVulnerabilities
.
Each of these criteria can be altered in the Nixpkgs configuration.
:::{.note} All this is checked during evaluation already, and the check includes any package that is evaluated. In particular, all build-time dependencies are checked. :::
A user's Nixpkgs configuration is stored in a user-specific configuration file located at ~/.config/nixpkgs/config.nix
. For example:
{
allowUnfree = true;
}
:::{.caution} Unfree software is not tested or built in Nixpkgs continuous integration, and therefore not cached. Most unfree licenses prohibit either executing or distributing the software. :::
Installing broken packages
There are two ways to try compiling a package which has been marked as broken.
-
For allowing the build of a broken package once, you can use an environment variable for a single invocation of the nix tools:
$ export NIXPKGS_ALLOW_BROKEN=1
-
For permanently allowing broken packages to be built, you may add
allowBroken = true;
to your user's configuration file, like this:{ allowBroken = true; }
Installing packages on unsupported systems
There are also two ways to try compiling a package which has been marked as unsupported for the given system.
-
For allowing the build of an unsupported package once, you can use an environment variable for a single invocation of the nix tools:
$ export NIXPKGS_ALLOW_UNSUPPORTED_SYSTEM=1
-
For permanently allowing unsupported packages to be built, you may add
allowUnsupportedSystem = true;
to your user's configuration file, like this:{ allowUnsupportedSystem = true; }
The difference between a package being unsupported on some system and being broken is admittedly a bit fuzzy. If a program ought to work on a certain platform, but doesn't, the platform should be included in meta.platforms
, but marked as broken with e.g. meta.broken = !hostPlatform.isWindows
. Of course, this begs the question of what "ought" means exactly. That is left to the package maintainer.
Installing unfree packages
All users of Nixpkgs are free software users, and many users (and developers) of Nixpkgs want to limit and tightly control their exposure to unfree software. At the same time, many users need (or want) to run some specific pieces of proprietary software. Nixpkgs includes some expressions for unfree software packages. By default unfree software cannot be installed and doesn’t show up in searches.
There are several ways to tweak how Nix handles a package which has been marked as unfree.
-
To temporarily allow all unfree packages, you can use an environment variable for a single invocation of the nix tools:
$ export NIXPKGS_ALLOW_UNFREE=1
-
It is possible to permanently allow individual unfree packages, while still blocking unfree packages by default using the
allowUnfreePredicate
configuration option in the user configuration file.This option is a function which accepts a package as a parameter, and returns a boolean. The following example configuration accepts a package and always returns false:
{ allowUnfreePredicate = (pkg: false); }
For a more useful example, try the following. This configuration only allows unfree packages named roon-server and visual studio code:
{ allowUnfreePredicate = pkg: builtins.elem (lib.getName pkg) [ "roon-server" "vscode" ]; }
-
It is also possible to allow and block licenses that are specifically acceptable or not acceptable, using
allowlistedLicenses
andblocklistedLicenses
, respectively.The following example configuration allowlists the licenses
amd
andwtfpl
:{ allowlistedLicenses = with lib.licenses; [ amd wtfpl ]; }
The following example configuration blocklists the
gpl3Only
andagpl3Only
licenses:{ blocklistedLicenses = with lib.licenses; [ agpl3Only gpl3Only ]; }
Note that
allowlistedLicenses
only applies to unfree licenses unlessallowUnfree
is enabled. It is not a generic allowlist for all types of licenses.blocklistedLicenses
applies to all licenses.
A complete list of licenses can be found in the file lib/licenses.nix
of the nixpkgs tree.
Installing insecure packages
There are several ways to tweak how Nix handles a package which has been marked as insecure.
-
To temporarily allow all insecure packages, you can use an environment variable for a single invocation of the nix tools:
$ export NIXPKGS_ALLOW_INSECURE=1
-
It is possible to permanently allow individual insecure packages, while still blocking other insecure packages by default using the
permittedInsecurePackages
configuration option in the user configuration file.The following example configuration permits the installation of the hypothetically insecure package
hello
, version1.2.3
:{ permittedInsecurePackages = [ "hello-1.2.3" ]; }
-
It is also possible to create a custom policy around which insecure packages to allow and deny, by overriding the
allowInsecurePredicate
configuration option.The
allowInsecurePredicate
option is a function which accepts a package and returns a boolean, much likeallowUnfreePredicate
.The following configuration example allows any version of the
ovftool
package:{ allowInsecurePredicate = pkg: builtins.elem (lib.getName pkg) [ "ovftool" ]; }
Note that
permittedInsecurePackages
is only checked ifallowInsecurePredicate
is not specified.
Modify packages via packageOverrides
You can define a function called packageOverrides
in your local ~/.config/nixpkgs/config.nix
to override Nix packages. It must be a function that takes pkgs as an argument and returns a modified set of packages.
{
packageOverrides = pkgs: rec {
foo = pkgs.foo.override { /* ... */ };
};
}
config
Options Reference
The following attributes can be passed in config
.
id-prefix: opt-
list-id: configuration-variable-list
source: ../config-options.json
Declarative Package Management
Build an environment
Using packageOverrides
, it is possible to manage packages declaratively. This means that we can list all of our desired packages within a declarative Nix expression. For example, to have aspell
, bc
, ffmpeg
, coreutils
, gdb
, nixUnstable
, emscripten
, jq
, nox
, and silver-searcher
, we could use the following in ~/.config/nixpkgs/config.nix
:
{
packageOverrides = pkgs: with pkgs; {
myPackages = pkgs.buildEnv {
name = "my-packages";
paths = [
aspell
bc
coreutils
gdb
ffmpeg
nixUnstable
emscripten
jq
nox
silver-searcher
];
};
};
}
To install it into our environment, you can just run nix-env -iA nixpkgs.myPackages
. If you want to load the packages to be built from a working copy of nixpkgs
you just run nix-env -f. -iA myPackages
. To explore what's been installed, just look through ~/.nix-profile/
. You can see that a lot of stuff has been installed. Some of this stuff is useful some of it isn't. Let's tell Nixpkgs to only link the stuff that we want:
{
packageOverrides = pkgs: with pkgs; {
myPackages = pkgs.buildEnv {
name = "my-packages";
paths = [
aspell
bc
coreutils
gdb
ffmpeg
nixUnstable
emscripten
jq
nox
silver-searcher
];
pathsToLink = [ "/share" "/bin" ];
};
};
}
pathsToLink
tells Nixpkgs to only link the paths listed which gets rid of the extra stuff in the profile. /bin
and /share
are good defaults for a user environment, getting rid of the clutter. If you are running on Nix on MacOS, you may want to add another path as well, /Applications
, that makes GUI apps available.
Getting documentation
After building that new environment, look through ~/.nix-profile
to make sure everything is there that we wanted. Discerning readers will note that some files are missing. Look inside ~/.nix-profile/share/man/man1/
to verify this. There are no man pages for any of the Nix tools! This is because some packages like Nix have multiple outputs for things like documentation (see section 4). Let's make Nix install those as well.
{
packageOverrides = pkgs: with pkgs; {
myPackages = pkgs.buildEnv {
name = "my-packages";
paths = [
aspell
bc
coreutils
ffmpeg
nixUnstable
emscripten
jq
nox
silver-searcher
];
pathsToLink = [ "/share/man" "/share/doc" "/bin" ];
extraOutputsToInstall = [ "man" "doc" ];
};
};
}
This provides us with some useful documentation for using our packages. However, if we actually want those manpages to be detected by man, we need to set up our environment. This can also be managed within Nix expressions.
{
packageOverrides = pkgs: with pkgs; rec {
myProfile = writeText "my-profile" ''
export PATH=$HOME/.nix-profile/bin:/nix/var/nix/profiles/default/bin:/sbin:/bin:/usr/sbin:/usr/bin
export MANPATH=$HOME/.nix-profile/share/man:/nix/var/nix/profiles/default/share/man:/usr/share/man
'';
myPackages = pkgs.buildEnv {
name = "my-packages";
paths = [
(runCommand "profile" {} ''
mkdir -p $out/etc/profile.d
cp ${myProfile} $out/etc/profile.d/my-profile.sh
'')
aspell
bc
coreutils
ffmpeg
man
nixUnstable
emscripten
jq
nox
silver-searcher
];
pathsToLink = [ "/share/man" "/share/doc" "/bin" "/etc" ];
extraOutputsToInstall = [ "man" "doc" ];
};
};
}
For this to work fully, you must also have this script sourced when you are logged in. Try adding something like this to your ~/.profile
file:
#!/bin/sh
if [ -d "${HOME}/.nix-profile/etc/profile.d" ]; then
for i in "${HOME}/.nix-profile/etc/profile.d/"*.sh; do
if [ -r "$i" ]; then
. "$i"
fi
done
fi
Now just run . "${HOME}/.profile"
and you can start loading man pages from your environment.
GNU info setup
Configuring GNU info is a little bit trickier than man pages. To work correctly, info needs a database to be generated. This can be done with some small modifications to our environment scripts.
{
packageOverrides = pkgs: with pkgs; rec {
myProfile = writeText "my-profile" ''
export PATH=$HOME/.nix-profile/bin:/nix/var/nix/profiles/default/bin:/sbin:/bin:/usr/sbin:/usr/bin
export MANPATH=$HOME/.nix-profile/share/man:/nix/var/nix/profiles/default/share/man:/usr/share/man
export INFOPATH=$HOME/.nix-profile/share/info:/nix/var/nix/profiles/default/share/info:/usr/share/info
'';
myPackages = pkgs.buildEnv {
name = "my-packages";
paths = [
(runCommand "profile" {} ''
mkdir -p $out/etc/profile.d
cp ${myProfile} $out/etc/profile.d/my-profile.sh
'')
aspell
bc
coreutils
ffmpeg
man
nixUnstable
emscripten
jq
nox
silver-searcher
texinfoInteractive
];
pathsToLink = [ "/share/man" "/share/doc" "/share/info" "/bin" "/etc" ];
extraOutputsToInstall = [ "man" "doc" "info" ];
postBuild = ''
if [ -x $out/bin/install-info -a -w $out/share/info ]; then
shopt -s nullglob
for i in $out/share/info/*.info $out/share/info/*.info.gz; do
$out/bin/install-info $i $out/share/info/dir
done
fi
'';
};
};
}
postBuild
tells Nixpkgs to run a command after building the environment. In this case, install-info
adds the installed info pages to dir
which is GNU info's default root node. Note that texinfoInteractive
is added to the environment to give the install-info
command.