GitOrigin-RevId: 18036c0be90f4e308ae3ebcab0e14aae0336fe42
16 KiB
Maven
Maven is a well-known build tool for the Java ecosystem however it has some challenges when integrating into the Nix build system.
The following provides a list of common patterns with how to package a Maven project (or any JVM language that can export to Maven) as a Nix package.
Building a package using maven.buildMavenPackage
Consider the following package:
{ lib, fetchFromGitHub, jre, makeWrapper, maven }:
maven.buildMavenPackage rec {
pname = "jd-cli";
version = "1.2.1";
src = fetchFromGitHub {
owner = "intoolswetrust";
repo = pname;
rev = "${pname}-${version}";
hash = "sha256-rRttA5H0A0c44loBzbKH7Waoted3IsOgxGCD2VM0U/Q=";
};
mvnHash = "sha256-kLpjMj05uC94/5vGMwMlFzLKNFOKeyNvq/vmB6pHTAo=";
nativeBuildInputs = [ makeWrapper ];
installPhase = ''
mkdir -p $out/bin $out/share/jd-cli
install -Dm644 jd-cli/target/jd-cli.jar $out/share/jd-cli
makeWrapper ${jre}/bin/java $out/bin/jd-cli \
--add-flags "-jar $out/share/jd-cli/jd-cli.jar"
'';
meta = with lib; {
description = "Simple command line wrapper around JD Core Java Decompiler project";
homepage = "https://github.com/intoolswetrust/jd-cli";
license = licenses.gpl3Plus;
maintainers = with maintainers; [ majiir ];
};
}:
This package calls maven.buildMavenPackage
to do its work. The primary difference from stdenv.mkDerivation
is the mvnHash
variable, which is a hash of all of the Maven dependencies.
::: {.tip}
After setting maven.buildMavenPackage
, we then do standard Java .jar
installation by saving the .jar
to $out/share/java
and then making a wrapper which allows executing that file; see for additional generic information about packaging Java applications.
:::
Stable Maven plugins
Maven defines default versions for its core plugins, e.g. maven-compiler-plugin
. If your project does not override these versions, an upgrade of Maven will change the version of the used plugins, and therefore the derivation and hash.
When maven
is upgraded, mvnHash
for the derivation must be updated as well: otherwise, the project will simply be built on the derivation of old plugins, and fail because the requested plugins are missing.
This clearly prevents automatic upgrades of Maven: a manual effort must be made throughout nixpkgs by any maintainer wishing to push the upgrades.
To make sure that your package does not add extra manual effort when upgrading Maven, explicitly define versions for all plugins. You can check if this is the case by adding the following plugin to your (parent) POM:
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-enforcer-plugin</artifactId>
<version>3.3.0</version>
<executions>
<execution>
<id>enforce-plugin-versions</id>
<goals>
<goal>enforce</goal>
</goals>
<configuration>
<rules>
<requirePluginVersions />
</rules>
</configuration>
</execution>
</executions>
</plugin>
Manually using mvn2nix
::: {.warning} This way is no longer recommended; see for the simpler and preferred way. :::
For the purposes of this example let's consider a very basic Maven project with the following pom.xml
with a single dependency on emoji-java.
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>io.github.fzakaria</groupId>
<artifactId>maven-demo</artifactId>
<version>1.0</version>
<packaging>jar</packaging>
<name>NixOS Maven Demo</name>
<dependencies>
<dependency>
<groupId>com.vdurmont</groupId>
<artifactId>emoji-java</artifactId>
<version>5.1.1</version>
</dependency>
</dependencies>
</project>
Our main class file will be very simple:
import com.vdurmont.emoji.EmojiParser;
public class Main {
public static void main(String[] args) {
String str = "NixOS :grinning: is super cool :smiley:!";
String result = EmojiParser.parseToUnicode(str);
System.out.println(result);
}
}
You find this demo project at https://github.com/fzakaria/nixos-maven-example.
Solving for dependencies
buildMaven with NixOS/mvn2nix-maven-plugin
buildMaven
is an alternative method that tries to follow similar patterns of other programming languages by generating a lock file. It relies on the maven plugin mvn2nix-maven-plugin.
First you generate a project-info.json
file using the maven plugin.
This should be executed in the project's source repository or be told which
pom.xml
to execute with.
# run this step within the project's source repository
❯ mvn org.nixos.mvn2nix:mvn2nix-maven-plugin:mvn2nix
❯ cat project-info.json | jq | head
{
"project": {
"artifactId": "maven-demo",
"groupId": "org.nixos",
"version": "1.0",
"classifier": "",
"extension": "jar",
"dependencies": [
{
"artifactId": "maven-resources-plugin",
This file is then given to the buildMaven
function, and it returns 2 attributes.
repo
:
A Maven repository that is a symlink farm of all the dependencies found in the project-info.json
build
:
A simple derivation that runs through mvn compile
& mvn package
to build the JAR. You may use this as inspiration for more complicated derivations.
Here is an example of building the Maven repository
{ pkgs ? import <nixpkgs> { } }:
with pkgs;
(buildMaven ./project-info.json).repo
The benefit over the double invocation as we will see below, is that the /nix/store entry is a linkFarm of every package, so that changes to your dependency set doesn't involve downloading everything from scratch.
❯ tree $(nix-build --no-out-link build-maven-repository.nix) | head
/nix/store/g87va52nkc8jzbmi1aqdcf2f109r4dvn-maven-repository
├── antlr
│ └── antlr
│ └── 2.7.2
│ ├── antlr-2.7.2.jar -> /nix/store/d027c8f2cnmj5yrynpbq2s6wmc9cb559-antlr-2.7.2.jar
│ └── antlr-2.7.2.pom -> /nix/store/mv42fc5gizl8h5g5vpywz1nfiynmzgp2-antlr-2.7.2.pom
├── avalon-framework
│ └── avalon-framework
│ └── 4.1.3
│ ├── avalon-framework-4.1.3.jar -> /nix/store/iv5fp3955w3nq28ff9xfz86wvxbiw6n9-avalon-framework-4.1.3.jar
Double Invocation
::: {.note} This pattern is the simplest but may cause unnecessary rebuilds due to the output hash changing. :::
The double invocation is a simple way to get around the problem that nix-build
may be sandboxed and have no Internet connectivity.
It treats the entire Maven repository as a single source to be downloaded, relying on Maven's dependency resolution to satisfy the output hash. This is similar to fetchers like fetchgit
, except it has to run a Maven build to determine what to download.
The first step will be to build the Maven project as a fixed-output derivation in order to collect the Maven repository -- below is an example.
::: {.note}
Traditionally the Maven repository is at ~/.m2/repository
. We will override this to be the $out
directory.
:::
{ lib, stdenv, maven }:
stdenv.mkDerivation {
name = "maven-repository";
buildInputs = [ maven ];
src = ./.; # or fetchFromGitHub, cleanSourceWith, etc
buildPhase = ''
mvn package -Dmaven.repo.local=$out
'';
# keep only *.{pom,jar,sha1,nbm} and delete all ephemeral files with lastModified timestamps inside
installPhase = ''
find $out -type f \
-name \*.lastUpdated -or \
-name resolver-status.properties -or \
-name _remote.repositories \
-delete
'';
# don't do any fixup
dontFixup = true;
outputHashAlgo = "sha256";
outputHashMode = "recursive";
# replace this with the correct SHA256
outputHash = lib.fakeSha256;
}
The build will fail, and tell you the expected outputHash
to place. When you've set the hash, the build will return with a /nix/store
entry whose contents are the full Maven repository.
::: {.warning} Some additional files are deleted that would cause the output hash to change potentially on subsequent runs. :::
❯ tree $(nix-build --no-out-link double-invocation-repository.nix) | head
/nix/store/8kicxzp98j68xyi9gl6jda67hp3c54fq-maven-repository
├── backport-util-concurrent
│ └── backport-util-concurrent
│ └── 3.1
│ ├── backport-util-concurrent-3.1.pom
│ └── backport-util-concurrent-3.1.pom.sha1
├── classworlds
│ └── classworlds
│ ├── 1.1
│ │ ├── classworlds-1.1.jar
If your package uses SNAPSHOT dependencies or version ranges; there is a strong likelihood that over-time your output hash will change since the resolved dependencies may change. Hence this method is less recommended then using buildMaven
.
Building a JAR
Regardless of which strategy is chosen above, the step to build the derivation is the same.
{ stdenv, maven, callPackage }:
# pick a repository derivation, here we will use buildMaven
let repository = callPackage ./build-maven-repository.nix { };
in stdenv.mkDerivation rec {
pname = "maven-demo";
version = "1.0";
src = builtins.fetchTarball "https://github.com/fzakaria/nixos-maven-example/archive/main.tar.gz";
buildInputs = [ maven ];
buildPhase = ''
echo "Using repository ${repository}"
mvn --offline -Dmaven.repo.local=${repository} package;
'';
installPhase = ''
install -Dm644 target/${pname}-${version}.jar $out/share/java
'';
}
::: {.tip}
We place the library in $out/share/java
since JDK package has a stdenv setup hook that adds any JARs in the share/java
directories of the build inputs to the CLASSPATH environment.
:::
❯ tree $(nix-build --no-out-link build-jar.nix)
/nix/store/7jw3xdfagkc2vw8wrsdv68qpsnrxgvky-maven-demo-1.0
└── share
└── java
└── maven-demo-1.0.jar
2 directories, 1 file
Runnable JAR
The previous example builds a jar
file but that's not a file one can run.
You need to use it with java -jar $out/share/java/output.jar
and make sure to provide the required dependencies on the classpath.
The following explains how to use makeWrapper
in order to make the derivation produce an executable that will run the JAR file you created.
We will use the same repository we built above (either double invocation or buildMaven) to setup a CLASSPATH for our JAR.
The following two methods are more suited to Nix then building an UberJar which may be the more traditional approach.
CLASSPATH
This method is ideal if you are providing a derivation for nixpkgs and don't want to patch the project's pom.xml
.
We will read the Maven repository and flatten it to a single list. This list will then be concatenated with the CLASSPATH separator to create the full classpath.
We make sure to provide this classpath to the makeWrapper
.
{ stdenv, maven, callPackage, makeWrapper, jre }:
let
repository = callPackage ./build-maven-repository.nix { };
in stdenv.mkDerivation rec {
pname = "maven-demo";
version = "1.0";
src = builtins.fetchTarball
"https://github.com/fzakaria/nixos-maven-example/archive/main.tar.gz";
nativeBuildInputs = [ makeWrapper ];
buildInputs = [ maven ];
buildPhase = ''
echo "Using repository ${repository}"
mvn --offline -Dmaven.repo.local=${repository} package;
'';
installPhase = ''
mkdir -p $out/bin
classpath=$(find ${repository} -name "*.jar" -printf ':%h/%f');
install -Dm644 target/${pname}-${version}.jar $out/share/java
# create a wrapper that will automatically set the classpath
# this should be the paths from the dependency derivation
makeWrapper ${jre}/bin/java $out/bin/${pname} \
--add-flags "-classpath $out/share/java/${pname}-${version}.jar:''${classpath#:}" \
--add-flags "Main"
'';
}
MANIFEST file via Maven Plugin
This method is ideal if you are the project owner and want to change your pom.xml
to set the CLASSPATH within it.
Augment the pom.xml
to create a JAR with the following manifest:
<build>
<plugins>
<plugin>
<artifactId>maven-jar-plugin</artifactId>
<configuration>
<archive>
<manifest>
<addClasspath>true</addClasspath>
<classpathPrefix>../../repository/</classpathPrefix>
<classpathLayoutType>repository</classpathLayoutType>
<mainClass>Main</mainClass>
</manifest>
<manifestEntries>
<Class-Path>.</Class-Path>
</manifestEntries>
</archive>
</configuration>
</plugin>
</plugins>
</build>
The above plugin instructs the JAR to look for the necessary dependencies in the lib/
relative folder. The layout of the folder is also in the maven repository style.
❯ unzip -q -c $(nix-build --no-out-link runnable-jar.nix)/share/java/maven-demo-1.0.jar META-INF/MANIFEST.MF
Manifest-Version: 1.0
Archiver-Version: Plexus Archiver
Built-By: nixbld
Class-Path: . ../../repository/com/vdurmont/emoji-java/5.1.1/emoji-jav
a-5.1.1.jar ../../repository/org/json/json/20170516/json-20170516.jar
Created-By: Apache Maven 3.6.3
Build-Jdk: 1.8.0_265
Main-Class: Main
We will modify the derivation above to add a symlink to our repository so that it's accessible to our JAR during the installPhase
.
{ stdenv, maven, callPackage, makeWrapper, jre }:
# pick a repository derivation, here we will use buildMaven
let repository = callPackage ./build-maven-repository.nix { };
in stdenv.mkDerivation rec {
pname = "maven-demo";
version = "1.0";
src = builtins.fetchTarball
"https://github.com/fzakaria/nixos-maven-example/archive/main.tar.gz";
nativeBuildInputs = [ makeWrapper ];
buildInputs = [ maven ];
buildPhase = ''
echo "Using repository ${repository}"
mvn --offline -Dmaven.repo.local=${repository} package;
'';
installPhase = ''
mkdir -p $out/bin
# create a symbolic link for the repository directory
ln -s ${repository} $out/repository
install -Dm644 target/${pname}-${version}.jar $out/share/java
# create a wrapper that will automatically set the classpath
# this should be the paths from the dependency derivation
makeWrapper ${jre}/bin/java $out/bin/${pname} \
--add-flags "-jar $out/share/java/${pname}-${version}.jar"
'';
}
::: {.note}
Our script produces a dependency on jre
rather than jdk
to restrict the runtime closure necessary to run the application.
:::
This will give you an executable shell-script that launches your JAR with all the dependencies available.
❯ tree $(nix-build --no-out-link runnable-jar.nix)
/nix/store/8d4c3ibw8ynsn01ibhyqmc1zhzz75s26-maven-demo-1.0
├── bin
│ └── maven-demo
├── repository -> /nix/store/g87va52nkc8jzbmi1aqdcf2f109r4dvn-maven-repository
└── share
└── java
└── maven-demo-1.0.jar
❯ $(nix-build --no-out-link --option tarball-ttl 1 runnable-jar.nix)/bin/maven-demo
NixOS 😀 is super cool 😃!